

Best Available Copy20050228007

FOREWORD

On November 3, 1961, the Advisory Comittee on Civil Defense of the National Acsdemy of Sciences included the following recomendation in a letter to the Assistant Secretary of nefense for Civil Defense:

With regard to the program as a whole, the Committee feels very strongly that it should be based on reallsitic ard detalled planning assumptions for civil defense. We have, in our specific comments, urged the development of such assumptions. We belleve that not only research, but all civil defense effort should be planned ans carried out in conformance to the best possible premises concerning levels and types of enemy attack, and their effects on all parts of the nation. Planning assumptions would, furthermore, be simplified and made available to individuals and communities as guidence to assist then in planning their protective actions. ${ }^{*}$

In the Department of Defense - Office of Civil Defense official publication FALLOUT PROTECTICN, that to Know and Do About Nuclear Attack, it was subsequently stateid:

Many of the spaces in the central areas of large pnpulation centers would be exposed to destruction by blast and fire in the event of a nuclear attack. But the pattern of attack cannot be predicted, and existing sheiter is more widely distributed in relation to population than appears to the casusl observer. Purther, this space is immediately available, and the cost of identification, marking, and stocking is less than $\$ 4$ per space."
AE:s: reviewing the Civil Defense program, the Military Operations Subcommittee of the House Committee on Government Operations 1ssued a report on May 31, 1962, which reechoed the carlier recomendation made by the Advisory Comittee on Civii Defense:
"Analyses of hazard probabilities and damage should be carried forward, not only on the basis of varying attack
assumptions, but on assumptions of varying levels and kinds of shelter protection--including protection against blast and thermal as well as allout effects--in order to determine an optimum shelter program for the United States."

In March, 1965, the Office of Civil Defense issued Technical Memorandur 61-3 (Revieed) defining a fallout shelter as "a structure, room, or space that protects its occuparts from fallout gamm radiation, with a protection factor of at least $40^{\prime \prime}$. The memorandum also states:
"Decalled DoD studies of the lifesaving potential of fallout shelters indicate that for the current time frame and for the foreseeable future, shelters with a protection factor of 40 could save over 90% of these persons who would otherwise die if unprotected against potential lethal radiation levels. . . . Computations indicate that decreasing returns in added lives saved per added dcllar invested are obtained as PF's are increased significantly above 40. On a rationwide basis, therefore, it would be better life-saving potertial per dollar for the same dollar experditure, to obtain more shelter space of lower PF than only a few shelter spaces with a very high PF."
Guidance of the type suggested by the Academy Comittee is still not avallable, and there appears, at present, to be no plans for making it available.

CONTENTS

SOMPARI AKD CONCLUSIONS 1
PART I - TARGETING ASSUMPTIONS FOK ATTACKS ACATYST POPU:ATIONS 7
The Problem 7
Targeting for Maximum Population Kill 10
Additional Consequences of the Targeting Modei 23
The Population of the United States 26
The Targeting Model Applied to a Specific Urban Area 31
PART II - THE IRTENSITY AND DISTRIBUTIC: OF INITIAL AHD RESIDUAL RADIATION 39
General Considerations 39
Radiation Dose Units 41
Equivalent Residual Dose (Biologically Effective Dose) 42
Initial Nuclear Radiation. 44
Residual Nuclear Radiation 48
Doses and Dose Rates from Uniform Distribution of Fission Products on the Ground 51
Contamination Levels and Accumulated Doses in an Idealized Pallout Patterr: Scaling with Yield and Wind 55
Mateorological Data for Use with Fallout Prediction zodels 60
Doses and Dose Rates in Overlspping Pallout Patterns 62
APPENDIXES
APPENDIX A - Distribution of Land Area by Density of Population 67
FENDIX B - Excerpt from Statement of Secretary ofDefense, Rcbert S. McNamara Before theHouse Armed Services Committee on theFiscal Year 1966-70 Defense Programand 1966 Defense Budget, February 19,1965 85
PENDIX C - Clinical Feacures of Radiation Injury. 93
PEAMTY D - Pattern Dimension3 and Areas for $\mathrm{H}+1$Hour vose Rate Contours and Maximu..Blological Dose (= 1 Week Dose) 99

```85
```99

\section*{SUAMARY AND CONCUSIONS}

To design a shelter which offers its prospective occhparts a reasonable prospect of survival in the event of nuclear attack, it is necessary to make a quantitative estimate of the
 to which the shelter location could reasonably be subjected. To this end, it is necessary to make an est!mate of the numbers and jlelds of weapons which would be detonated in the United States, and to indicate where it is likely that they would be detonated. Of particular importance to the urban population o: the United States -- which constitutes 70 percent of the total population concentrated on 1 percent of the land area -- are the number and ylelds of the weapons which might be delioerately tascetcd to maxicize population kill, and the criteria adopted by the attacker for determining how these weapons should be allocated to and within areas of population concentration.

It is argued that a targeting criteria which might be edopted by a potential enemy in assigning a portion of his nuclear delivery force for the purpose of maximizing population fatalities would be to alm weapons in such a way as to include the maximum number of persons within a blast level of at least 5 pounds per square inch (psi) overpressure. It is hypothesized that the total cost of delivering a nuclear weapon over intercontinental distances varies approximately as the \(2 / 3\) power of its yield. Since the area included within the 5 psi level for an alrburst or surfaceburst also varies as the \(2 / 3\) power of the yleld, the total area included within the 5 psi level for a given total cost for delivered weapons does not depend on the yleld of the individual weapons delivered.

The area over which a single weapon exerts a blast level of at least 5 psi is taken as the "lethal" area 0 : the weapon. 1

It is assumed that the level of attack which maght be deLivered against population targets in the United States would Lie between that characterized by 100 1-MT weapons and 1000 1-MT reapons. The lethal areas assuciated with these two attack levels are:

Surfacebursts
100 1-MT weapons
1000 1-MT weapons
\[
2,380 \text { sq. mí. }
\]
\[
23,800 \text { sq. mi. }
\]

Alrburets
5,800 sq. mi.
\(58,000 \mathrm{sq} . \mathrm{mi}\).

The total urbanized area of the jnited States covers approxineteiy 25,000 square miles, or approximately the lethal grea issociated with the alrburst of 430 lWT weapons.

The lethal area associeted with an airburst of a given field is over twice that of a surfaceburst or the same yield. for attacks against urban population, it is an unsolved problem ts to winether or not a larger number of fatalities would be in:urred by eifjursts, with more fatalities from the initial iffcits of blast, heat, and initial nuclear radiation, or from lurfacebursts with a smaller nutber of fatalities from the .mmediate effects, but with an uncertain number of casuaities

\footnotetext{
The "Iethal area" associated with a nucipar weapon burst is defined as the circular area, centered on the ground zero of the burst, of such radius that the total number of persons in a uniformiy dense population which are killed from the blast, heat, and initial nuclear radiation of the burst is equal to the number of persons within the circle. If \(P(r)\) is the probability that a person will be killed by the immediate weapon effects as a function of distance \(r\) from ground zero, then

Lethal area \(=\int_{0}^{\infty} 2 \pi r P(r) d r\).
It is a consequence of the definition that the total nusiver of persons within the lethal area who are not killed just equals the total number outside who are killed.
}
due to fallout. Accordingly, the possibility of both airbursts and surfacebursts must be taken into account when considering shelter requirements in urtan centers subject to direct attack.

Qiven an attack on the popilation of the United States, the maximum number of persons wquid be included within the lethal area of the reapons employed if the lethal area could be allocated to those places in the United States for which the population density is equal to or greater than some minimum population density \(D_{m i n}\), and to no area for which population density it less than \(D_{m i n}\). \(D_{m i n}\) can be determined from the total lethal area of the attack, and from a graph (Figure 9) which shows the area of the United States for which the population daraity is equal to or greater than any given density. The portion of any given urbanized area targeted to the 5 psi level may then be taken as the area within the local population dersity contour on which the population density is \(D_{m i n}\). The number of weapons assigned to this area is then chosen so that their combined lethal areas are approximately those of the area within the'population density contour determined by \(D_{m i n}\).

For given population concentration, there may be no reason to presume that weapons would be almed at parificular points within the area to be targeted (e.g., at specific military or induetis targets). In that case, the probability of survizal in a shelter which protects to the \(X\) psi level and wich is loceted at random within the targeted area is approximately the ratio of the area covered by \(x\) psi from any given meapons burst to the area covered by 5 psi from the same weapon burst. Under the targeting doctrine assumed, this probability 1s independent of weapon yivid, or whether or not the weapon is airburst or surfaceburst. Jnder the assumptions of this targeting model, a 30 psi shelter will reduce the probability of being killed in a targetied area to stout 10 percent.

Por shelters subjected to blast levels greater than \(30 \mathrm{~F}=\mathrm{i}\) lout one and a half times the radius of the fireball), it is longer true that protection against tlast ani nign ie:e:s of ildual radiation (failout) automaticall; suarantees fri:ection linst initial nuciear radiation.

Fallout deposition patierns are infely unpredictabie. The llout level at any point depends on the total, surfaceburst, ision megatonage of all attacis against all targets wh: eh itribute to the fallout at that point. The highest ie:re:s of idduai radiation of cencern to urban populations are lisely be experienced in and immediately downind of large urianized sus subject to direct attack with multiole, high-yleit rfacebursts. Based on one of several fallout models cirrenti; use, fallout cortaminatior levels in the range of \(5,000-\) , 000 roentgens/hour at 1 hour, corresponding to maximum biosical dose levels of 15,000 to 30,000 roentgens, migr.t isonably be anticipated in portions of an area attacked rith iurfaceburst 20-i:- weapons, earh deriving 50 percent of their sld from fission.

Data are presented to enable, for any given ievel of attacio rected against populations, a rough allocation of weapons ong each of the \(2: 3\) principal urbanized areas in ine United ztes. The model and data indisate that the riashington (D.C. -- Md.) urbanized area, with 1.8 mililion persons and covering J square miles, sould be allocated 3 l-idT weapons in a.i attack. ainst the populatior of the United States consistitig of 100 TT weapons alrburst at optimum altitude. The model and data ficate this area would receive 12 1-MT weapons for an attack sinst the United States consisting of 1000 1-MT surfaceoursts. each case the entire District of Columbia, consisting of 62 usre miles at an average density of 12,400 persons/square mile subjected to blast leve'g of at least 5 psi. Por an attack alnst the U.S. population with 300 1-MT alrbursts, or 1000

1-NI surfacebursts, the model indicates that the entire Washington urbanized area, including Rockville, Maryland, could anticipate blast levels of at least 5 psi.

\section*{PART I - TARGETING ASSUMPTIONS FOR ATTACKS AGAINST POPULATIONS}

\section*{A. THE PROBLEM}

To design a sheiter which offers its prospective occupants a reasonable prospect of survival against fallout in the event of thermonuclear war, it is necessary to make a quantitative estimate of the likely level of all weapon effects - blast, thermal, initial radiation, and fallout - to which the shelter location would be subjected in a nuclear attack. The reason is simple enough: both the shelter and its occupants must withstand those weapon eifects which precede the failout. The problem is to anticipate for any proposed shelter location, both the right magnitude of effects, and the right combination of effects. More precisely, the basis for shelter design and operation must be a prudent and practical assessment of the probability that the proposed shelter will be subjected to various combinations and levels of meapon effects.

It is far from obvious that it is possible to develop useful guidance of this type for every -- or even for any -location in the United States. There are many strategies and weapons available tc the enemy. Our knowledge of them is incomplete, the proble=s change with time and with technological developments, and much that nappens in war is ret in accord with anybody's plan. Any place could be in the mile-across, 900-foot-deep hole created by the surfaceburst of a 30-MT warhead, in which case no shelter would be of any avail. And, any place could be sargely untouched, even by fallout, in which case no shelter would be needed.

Neither of these latter assumptions would be a useful basis for civil defense planning. This follows from straightformard but not obvious complitations on the areas of the fallout, blast, and thermal effects of nuclear weapons, the numbers of cities, towns, and military targets in the United States, and the plausible number of deliverable weapons possessed by any potential enemy. It has been recognized for some time that even remote, rural areas must concern themselves With the possibility of dangerous levels of fallout, and that some cities could be subjected to direct attack, either because they contain or are near to priority military targets, or simply because they are centers of population and industry. Two authoritative statements of targeting doctrine which offer an informed appraisal of the ultimate threat to civil populations have been given by Secretary McNamara and Marshal Sokolovikil:

Secretary McNamara testified before the Senate Armed Services Comittee: \({ }^{1}\)

The major mission of the strategic retaliatory forces is to deter war by their capability to destroy the enemy's war making potential, including not only his nuclear strike force and military installations, but also his urban society, if necessary."

Marshal Sokolovski1 states in his bonk Soviet M1litary Stretegy: \({ }^{2}\)

What will be the characteristic features of a war of the future from the point of view of its military-strategic coals and the means of waging it?

\footnotetext{
\(1_{\text {Hearings }}\) on the Department of Defense Appropriations fCr PI 1964, O.S. House of Representatives, Part I, Page 110 (Secretary McNamara's statement given on February 7, 1963).
\({ }^{2}\) Milltary Strategy, edited by V. D. Soixolovsk:1 iVoernaia Strategila, V. D. Sokolovskil, Voennoe Izdatel'stvo Ministerstva Oborony, SSR, Moskva, 1962), translated by Poreign Technology Livision, Wright-Patterson Air Force Ease (quote from Chapter IV).
}
"On the basis of the above considered poiltical and military goals of the two camps, it may be assumed that the belligerents will use tiee most decisive means of waging war with, above all, tre mass use of nuclear weapons for the purpose of achievi:.s the anninilation or capitulation of the enemy in the shcriest possible time.
"The question arises of what, under these corditions, constitutes the main military-strategic goal o: the war: the defeat of the enemy's armed forces as was the case in the past, or the anninilatisn and destructio:i of objectives in the enemy zone of the Interior and the aisorganization of the latter?
"The theory of Soviet rislitary strategy gives the rollowing answer to this question: both of these goals should be achicred simultaneousig. The anninilation of the ener.j's armed forces, the destriction of objectives in the zone of the Interior, the disorganization of the zone of the Interior will be a singie continuous process of the war. Two main factors are at the root of this solution or the problem: first, the need to decisively defeat the agressor in the shortest possible time, for which it will be nesessary to deprive him similtaneously of his military, polit1cal, and economic capaこ1lities of waging war; second, the real possibility of achieving, these goals simultaneously Fith the ald of existing means of arned combat."

Assuming that some fraciion of the nuclear striking force of a possible enemy might be employed for the unhappy purpose of killing people in the most efficient manner, what assumptions should be made as to just hoi it would be used? In particular, what criteria should the civil defense pianner use as a guide © 0 determining which cities could reasonably be candidates for direct attack? How far into the suburbs of such cities would it be prudent for the shelter designer to concern fimself with blast and heat in addition to fallout, and with what levels of blast, heat, and fallout? Given crude guidance on how many bombs of what sizes might be expected to fall where, it then becomes possible to utilize she detailed and important technical information on the fallout, radiation, and blast effects of individual weapons given in such publications as The Effects of Nuclear Weapons for determining shelter requirements, and evalusting shelter proposals. without such guidance, the 70 percent
of the U.S. population which presentiy lives in urban areas has no basis for assessing the merits of alternative protective measures.
B. TARGEMING POR MAXIMUM POPULATION KILL

Determination of the burst locations of an attack designed to maximize population fatalities depends on a number of conditions and assumptions:

The number and yields of nuclear weapons allocated to the destruction of urian targets,
The definition of a fatality, or more correctly the combination of weapon effects assimed to give rise to fatalities over some defined period of time,
The active and passive measures which have been taken to counter the effects of population attack,
The distribution of population over the targeted area.
It is assumed here that population preparedness is the same as currentiy exists in the United States, and that active defense measures are not of such a character as to influence the assumptions for passive defense planning. It is further assumed that the actual assignment of weapons is done in a way idescribed later) which maximizes blast fatalities. This is done without attempting to answer the question of whether or not more persons might in fact be killed during the first day or two by fire (as was the case in Hiroshima and Nasasaki), \({ }^{l}\) or within 60 days by radiation, or within the first year by the ccmbined effects of blast, fire, fallout, starvation, disease, exposure, and general chaos. The reason for the assumption 18 partiy that the effects of fallout, fire, and general chaos are both uncertain and difficult to assess, and strongly dependent upon

\footnotetext{
The Effects of Nuclear Weapons, paragraph 11.13-11.20, prepared by the United States Department of Defense, published by the United States Atomic Energy Commission, April 1362, Samuel Glasstone, editor, U.S. Govemment Printing Office (weapon effects-yield-distance relations, from Nuclear Bomb Effects Computer accompanying publications).
}
wind and weather. Also, blast is more dependable and decisive against industry and military targets in populated areas than are the other effects of airbursts or surfacebursts.

The question then arises as to what likelinood of a blast fatality should be assigned to a given level of blast overpressure. Here again simplifying assumptions are made which may be better justified as an assumption for optimal targeting than as a method of damage assessment. It is assumed that everyone subjected to an overpressure level of 5 psi (or greater) is killed, and that ereryone subjegted to less than 5 psi survives.

This assumption may be questioned on two counts: (1) the selection of a zodel with a single overpressure criterion for determining fatality, and (2) the choice of 5 psi as the dividing line. Each of these assumptions is examined briefly.

The 1949 edition of The Effects of Atomic Weapons \({ }^{1}\) gave a curve showing the percentage of survivors in Hiroshima as a function of radial distance from ground zero. This curve is reproduced as Pigure 1 , and redrawn in Pigure 2 to show the same phenomenon as a function of peak blast overpressure. It is seen from Figure 2 that in this particular unwarned population, the alrburst of a \(14-K T\) bomb \(^{2}\) caused casualties to begin at an overpressure level of 3 psi, that at 5 psi there were 30 percent fatalities, and that even at 16 psi, 15 percent evidently survived.

\footnotetext{
The Effects of Atomic Weapons, prepared for and in cooperation With the U.S. Department of Defense and the U.S. Atomic Energy Commission under the direction of the Los Alamos Scientific Laboratory. Revised September 1950, Samuel Glasstone, Executive Editor, U.S. Government Printing orfice.
\({ }^{2}\) RM 4193 PR The Yield of the Hiroshima Bomb as Derived from Pressure Records, H. L. Brode, September 1964.
}

FIGURE 1. Percent Mortolity as a Function of Distance from Ground Zero fer the Atanic Bombings of Hiroshima and Nagosaki

FIGURE 2. Porcent Mortolity os a Function of Peak Overpressure for the Afomic lambings of Hiroshims and Nogosoki
the same 48 states will have increased in population to about 210 million persons (an increase of about 32 million persons, or almost 18 nercent). Whereas in 1960 almost 70 percent of the population lived in urbanized areas, \({ }^{1}\) by 1970 it is estimated that this figure will increase to about 80 percent.

In 2960, the urban population was concentrated in silghtly more than 1 percent of the land area of the country (Table 4). The population of urbarized areas, something more than one-half of the total, occupied less than 1 percent of the total land area. Among urban places, the number of inhabitants per square mile decreased as size of place decreased. For places of i,000,000 inhaiditants or more, ihe aveiage density was 13,865 persons per square mile; for places between 100,000 and 1,000,000, average densities ranged between 4,000 and 6,000 per square mile, and the average density for places of 2,500 to 5,000 was 1,446. In urban-fringe areas outside urban places, the average density was 1,781 per square mile, and in rural territory the density was 15. The average prpulation density for tise 48 conterminous states was about 60 jersons/square mile.

\footnotetext{
Prom 1960 Census, Vol. I, op. cit.:
"Urban and rural residence.--According to the definition adopted for use in the 1960 Census, the urban popilation comprises all persons living in (a) places of 2,500 inhabitants or more incorporated as cities, boroughs, villages, and towns (except towns in New England, Nex York, and Wisconsin); (b) the densely settled urban fringe, whether incorporated or unincorporated, of urbanized areas; (c) toxns in New England and townshipt in New Jersey and Pennsylvania which contain no incorporated municipalities as subdivisions and have either 25,000 inhabitants or more or a population of 2,500 to 25,000 and a density of 1,500 persons or more per square mile; (d) counties in States other than the New England States, New Jersey, and Pennsylvania that have no incorporated municipalities within their boundsries and have a density of 1,500 persons per square mile; and (e) unincorporated places of 2,500 inhabitants or more. In other words, the urban population comprises all persons living in urbanized areas and in places or 2,500 inhabitants or more outside urbanized areas. The population not classified as urban constitutes the rural population."
}

Tabie 4. POPULATION AND DENSITY IN OROUPS OP PLACES CLASSIFIED ACCORDING TO SIZE: 1960

The discribution of the 1960 U.S. population is shown in Pigure 11. A tatislation of U.S. urbanized areas, ranked according to population, is shown ir Table 5. Detailed statistics on the land areas, population, and population densities of the central city and urban fringes of the 213 urbanized areas shown in Table 5 are presented in Appendix A. A summary of these statistics is presented in the graphs of Pigures 9 and 12.

The U.S. population data summarized above are not very satisfactory inputs to the targeting model described in this paper. One is really interested In the population densities which will pertain in 1970, rather than those which existed In 1960. Purther, the definition of urbanized areas, and the scale on which densities were computed, were not devised for the purpose for which they have been used here. A treatment of U.S. census statistics more directly oriented to the needs of civil defense is given in OCD-OEP National i.oca-
tion Code, but as yet without the presentation of iand areas and population densities in the central city and the urban fringe.

FIGURE 3. Wood-Frome House Exposed to 1.7 pai Overpressure and About \(9 \mathrm{col} / \mathrm{cm}^{2}\) Thermal Eneryy (7,500 feet from 16-KT Burst on 300-ft Tower)

FIGLite 4. Strengthenad Wood-Frome Howse Exposed to 4 psi Overpressure and About 25 col/ \(\mathrm{cm}^{2}\) Thermal Ensigy (5,500 foet from 29-XT Burst on a 500-A Tower)

FIGURE 5. Urreinforeed Brick House Expored to 5 psi Overpressure (4,700 feet from 29-KT Burst on a 500-ft Tower)

FIGLate 6. Stesl-Froming, Stesl Ponel Building Exposed to 3.1 pri Overpressure

FIGURE 7. Thermal Eff.cts on the Woad-Frome House immediately After Burst, but Bofore Arrival of Blas Wave. Themal Flux wos \(25 \mathrm{col} / \mathrm{cm}^{2}\). House Destroyed by Blast Wave Which Followed. (3,500 feet from 16-KT Qurit on © 300-ft Tower)

FIGURE 8. Themal Effects on Wood-Frame House of Figure 7, Iwo Seconds Later

Table 1. LETHAL RADII AND fREAS FOR THE AIRBURSTS AND SURPACEBURSTS OF A 1-, 8- AND 64-NI WEAPON
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
thele \\
(1)
\end{tabular} & & (stertal tove at. \\
\hline & 1.etratareat & \\
\hline 1 & 2.8t & 48. \\
\hline - & 5.8 . & 2 2.4 \\
\hline 0 & 81.0 & 3 m \\
\hline & Ats.ant & \\
\hline 1 & 4.t) & 0.0. \\
\hline - & 6.0 & \\
\hline 4 & - 17.1 & 208.0 \\
\hline
\end{tabular}
master
 os 0 .
\[
\begin{aligned}
& h^{-h}, V^{1 / 2} \\
& 2 \cdot h_{1} \cdot 2 / 4
\end{aligned}
\]
 000 of 1 1-nt Mont.

No one can know what fraction of an enemy's total deliverable megatonage mould be allotted to military and to urban targets. It could depend on how the war started, and the extent to which he believed the civil population of his own country had been deliberately attacked. One can, however; make some high and low estimates of the total weight of attack Intended for the destruction of U.S. cities, and hypothesize some rough relations governing the total cost \(-\infty\) and presumably therefore the total military effort - of delivering weapons of different yield to obtain some approximate tradeo!is between the number and yield of meapons which might be used against us if the U.S. were subjected to direct population attacks. The assumption made here, and one which cannot be justifled except by general arguments relating to the economies of scale, is that the cost of a strategic weapon delivered over intercontinental distances varies approrimately as the 2/3 power of the yield.

Supfcse now one has three weights of attack target against a set of (urban) targets corresponding respectively, to the delivery of

100 1-NTL bombs,
300 1-NT bombs,
1000 1-NT bombs.

How would these attack levels translate into numbers of weapons and total deliverec megatonage if the same effort had been put into 8-MT bows or \(54-.4 T\) bombs, if the total cost is heid constant?

Let \(C(Y)=\) cost per strategic weapon delivered.
Then \(C(Y)=C_{1} Y^{2 / 3}\), where \(C_{1}\) is the cost of delivery of
a \(1-M T\) weapon, and \(Y\) is the weapon gieid in MT.
\(\therefore\) Let \(B=\) Strategic offensive budget for given level of population attack.

Then total number of weapons delivered \(=\frac{B}{C(I)}=\frac{B}{C_{1}} \frac{1}{Y^{2 / 3}}\). totel jield delivered \(=I \times \frac{B}{C(Y)}=\left(\frac{B}{C_{1}}\right) 1^{1 / 3}\).

Table 2. SPECIFICATION OP MUMBER OP WEAPONS AND TOTAL YIELD FOR THREE LEVELS OP ATTACE

The equivalont numbers and yields of weapons for the threa attack levels indicated above would then be shown in Table 2.

There is an interesting consequence of the assumptions concerning the cost of deliverable weapons as a function of individual weapon yield, and the manner in which the lethal area of weapon increases with yield. Havely, for a given expenditure, the combined lethal area of the weapons does not depend on individual weajon yield. That is, the lethal area is the same for uach attack level shown in Table 2.

It remains to determine how a given level of attack should be targeted -- that is to say, the location of the ground ceros - for attacks against people designed to maximize blast fatalities. The basic criteria, discussed above, is that the maximum number of persons be included within the 5 psi overpressure level.

The key element is recognition that the essential factor coverning the allocation of weapons is the density of population. It hes been shown that for a given level of attack with alrbursts or surfacebursts, a fixed amount of lethal area has to be distributed over the United States. Suppose now one has a curve, such as shown in Pigure 9 , showing the area of the United States for which the population density exceeds any civen density \(D\). It may be noted that the maximum number of persons could be covered with a given total lethal area if this aren could be distributed in such a way as to cover all those areas in the United States for which the population density is greater than or equal to some minimum density \(D_{m i n}\), and no areas at all for which the density of population is less than \(D_{\text {min }}\) - Purther, the value of this \(D_{\text {min }}\) would then be determined from such a curve as that shown in Pigure 9 , together with the total lethal area available. If then one wished to know how much of the total lethal area should be allocated to any given metropolitan or urbanized area, it would suffice to determine the population density contour around a given city within which the population density 1 s always greater than or equal to \(D_{\text {min }}\), and to compute the area within this contour. The area so determined would be the optimum lethal area to allocate to any civen city. This lethal area could then be converted back, from a knowledge of the lethal area of individual weapons, to provide a rule for calculating the optimum number of weapons to allocate to that particular city or urianized area.

To be a strictly valid optimization procedure, this rule would require that the lethal area of a weapon be able to take

FIGURE 9. Arse of the United States for Which the Population Demsity \(\geq 0\) Persoms/mi \({ }^{2}\) (19e0 Coneus)
any shape to fit, without overlaps or gaps, within any population density contour for which the population density is equal to or greater than \(D_{m i n}\). It would also be necessary to utilize only a fraction of a weapon in the event the area of a concentration of population for which the \(D\) is equal to or greater than \(D_{\text {min }}\) were less than a lethal area. For the concept of lethal area to be applicable, however, the population density should not vary significantly over linear distances comparable to the lethel redius. That this is the case for the weapon yields considered here (\(1,8,64 \mathrm{Mr}\)) can oniy be verified by a detailed examination of population densities in U.S. urban areas. It may \(1 s 0\) be noted, however, that since the cost per unit of delivered lethal (blast) area is assumed not to vary with the yield of the individual weapons, it is not unreasonable to assume that for given level of attack against population, the yleld of meapons for attack of a particular target would be selected to cover a given area as uniformiy as possible: If one places weapons inside a cortour where \(D\) is equal to or greater than \(D_{\text {min }}\) in such a way that the circular lethal areas of individual weapons are just tangent to each other, then one may argue that the gaps between the circular coverage are not too serious inasmuch as the locations not covered by 5 psi from any aingle weapon will be covered by an overpressure somewhat less than 5 psi from several weapons. But, whatever the approximations involved, the important and essential result is that a simple and difect criterion exists of deducing an oftimum, or near optimu, allocation of weapons to any particular target among all the competing targets in the country from (1) one curre showing the area of the U.S. for which the population density exceeds any given amount, (2) a map of the particular target of interest on which contours of constant population density are indicated, and (3) a second curve showing the area within the target area for which the population density exceeds any given mount.

It should be emphasized, of course, that some cities, by virtue of thin colocatior with important military targets or important governmental control or industrial centers have a strategic targeting importance for reasons other than population per se. Such cities might be attacked much more - or less -heavily than indicated by the model. It is also possible that arguments can be made that the best way to disrupt a country and kill its population is to spread the attack much more widely than indicated by the method proposed here on the grounds that the longer range effects of starvation, disease, and economic chaos would take a larger toll if no urban areas were left physically intact. Further the model tells nothing about whether or not an enemy might decide to seek to avoid population fatalities or maximize them, or how much of his total military effort would be allocated to the task of killing people if that were one of his targeting objectives. But it does provide crude but important quantitative guidance to urban and suburban populations pez se as to magnitude of the various weapon effects to which they could reasonably be subjected in the event the enemy targets in the simplest way to assure maximum prompt populatiois kill.

\section*{C. ADDITIONAL CONSEQUENCES OF THE TAROETING MODEL}

The model, as presented, leads to n number of interesting side conclusions. First, the selection or ground seros within the minimum density contour is not directiy important. A11 that matters is that the weapons be laid down in such a way that the entire area is covered with a minimum of gaps or overiaps. There ay, of course, be locsl reasons why particular points within an area would be a more profitable aim point. For example, some might coincide with a higher concentration of induatry, or an important governmental seat, or a target of direct military interest. Unless one assumes that a given metropolitan area would be attacked with a single weapon whose circular lethal area coincided approximately with the density
contour to be targeted, or unless there are local reasons for assuming the selection of specific alm points, one might assume for the purpose of desizning and locating sielters that any point within the contour indicating the density of population to be targeted is as likely to be a ground zero as any other point. Under this assumption the model gives an indication of the potentisi value of constructing a shelter which will withstand a given overpressure level, provided. the enemy targets for maximum population kill on the assumption of an unsheltered population. The value of the potential shelter protection 80 afforded is, in fact, independent of the yield of the individual weapons employed, or whether or not targeting (for blast kill) is done on the basis of an alrburst or surfaceburst. For suppose the lethal radius of a single weapon corresponds to \(X\) psi, and that sheiter is built to withstand 2 psi. Then if \(R_{L 1}\) is the lethel radius of a l-MT weapon, the lethal area of a \(\mathbf{Y - L I}\) weapon will be \(\pi\left(R_{L 1} Y^{1 / 3}\right)^{2}\). If \(R_{21}\) is the distance to which an overpressure of 2 psi is experienced from a 1-MT weapon, then \(\left(R_{Z 1} Y^{1 / 3}\right)^{2}\) will be the area over which this overpressure is experienced from a I-NT bomb. Thus the protection offered by the shelter capable of withstanding 2 psi , and located at random within the targeted area aill be given by the ratio
\[
\frac{\left(R_{21} r^{1 / 3}\right)^{2}}{\left(R_{L 1} I^{1 / 3}\right)^{2}}=\left(\frac{R_{21}}{R_{L 1}}\right)^{2}
\]
and this holds for both airbursts or surfacebursts. Assuming, as before, that \(R_{L 1}\) corresponds to 5 psi , one can then plot potential survival probability in a 2 psi shelter provided that targeting is done to achieve maximum population kill against an unsheltered population. Such a curve is shown in Figure 10 . The value of achieving shelter protection in the range of 20-30 psi is imaediately apparent.

FIGURE 10. Percont Masiolity in o Targated Area, Asuming Targeting Oplimized to Cover the Maximum Numbar of Porsons with an Overpressure of 3 pai

Finelly, it may be noted that the targeting model herein proposed can still be applied if the population of certain densely settled areas is sheltered to any specifled level of blast protection provided the density of population in the sheltered areas is first assumed to be reduced by the same ratio as plotted in Pigure 10. This means, for example, that the effect of a 30 psi sheiter, from the point of view of an enem targeteer trying to optimize fatalities in an unsheitered population, it to reduce the density of population in a apeciflc area by a factor of 10 . This would suggest that for a given level of attack, some persons who would not be targeted In an unsheltered population would then become logical targets sor direct attack. The total national sasualties would decrease, however, depending (ir a complex way) on how many persons in what areas were sheltered, and to what level of protection.

Table 3. POPULATION OF THE ONITED STATES AND OUTLYING AREAS: 1960 and 1950
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{1960} & \multirow[b]{2}{*}{1930} & \multicolumn{2}{|l|}{Iecrease. 1950 te 1960} \\
\hline & & & nueper & Percent \\
\hline Total & 183.835.009 & 154.233.234 & 29.051 .775 & 18.8 \\
\hline United States & 179.323.175 & 151.325.793. & 27.997 .377 & 18.5 \\
\hline Centoralans \%ulted staces & 178.464.236 & 130.697.361 & 27.765.875 & 18.4 \\
\hline ataste & 226.167 & 128.643 & 47.324 & 75.0 \\
\hline . Memelt & 632.772 & 499.7\%4 & 132.976 & 26.6 \\
\hline Comenmesith of Puerte Rice & 2.349 .544 & 2.210 .703 & 138.041 & 6.3 \\
\hline Gutiyfa aras of soverelgaty or jupiscifetien & 237.369 & 215.188 & 22.081 & 10.5 \\
\hline United seates pemietion abrasd & 1.374.421 & 401.545 & 528.076 & 185.4 \\
\hline
\end{tabular}
D. THS POPULATION OP THE UNITED STATES

The utility of the targeting model described - or that of any other model -- depends in part on the distribution of the population of the United States over the land area of the United States. The principal characteristics of this population distribution, as abstracted from references, \({ }^{l}\) are here summarized. The data and conclusions given are all based on the 1960 census. The psincipal factor to keep in mind when projecting these figures into the future are that the U.S. population is not only crowing, but, as described below, is becoming relatively more concentrated.

On April 1, 1960, the population of the 48 conterminous states, with total land area of about 3 miliion square miles, was 178, 464, 236 (see Table 3). By 1970 it is estimated that

\footnotetext{
10.s. Department of Comerce, Bureau of the Census, 1960 Census, Yo1. I, Cheracteristics of the ilation, U.S. Government Printing office, Washington, D. c. 1961.
OCD-OEP National Location Code, prepared by the Bureau of the Census for the Office of Civil Defense, Department of Defense, and the Rational Reaolice Evaluation Center, Office of Emergency Planning, 1962 (in 8 volumes), Unclassifitd. Bureau of the Budset, Executive Office of the President, Standsed Metropolitan Statistical Areas, 1964.
}
the same 48 states will have increased in population to about 210 million persons (an increase of abjut 32 million persons, or almost 18 percent). Whereas in 1960 almost 70 percent of the population lived in urbanized areas, \({ }^{1}\) by 1970 it is estimated that this figure will increase to about 80 percent.

In 1960, the urban population was concentrated in slightly more than 1 percent of the land area of the country (Table 4). The population of urbanized areas, something more than one-half of the total, occupled less than 1 percent of the total land area. Among urban places, the number of inhabitants per square mile decreased as size of place decreased. For places of \(1,000,000\) inhabitants or more, the average density was 13,865 persons per square mile; for places between 100,000 and 1,000,000, average densities ranged between 4,000 and 6,000 per square mile, and the average density for places of 2,500 to 5,000 was 1,446 . In urban-fringe areas outside urban places, the avorage density was 1,781 per square mile, and in rural territory the density was 15 . The average population density for the 48 conterminous states was about 60 persons/square mile.

Trom 1960 Consus, Vol. I, op. cit.:
"Urban and rural residence.--Aceording to the definition adoped for use in the 1960 Census, the urban popuiation comprises all persons living in (a) pisses of 2,500 inhabitants or more incorporated as cities, boroughs, villages, and towns (except town in New England, New York, and Wisconsin); (b) the densely sittled urban fringe, whether incorporated or unincorporated, of urbanized areas; (c) towns in New England and townships in Mew Jersey and Fennsylvania which contain no incorporated municipalities as subdivisions and have either 25,000 lnhabitants or more or a population of 2,500 to 25,000 and a dersity of 1,500 persons or more per square mile; (d) counties in States other than the New England States, New Jersey, and Pennsylvania that have no incorporated municipalities within their boundaries and have a density of 1,500 persons per square mile; and (e) unincorporated places of 2,500 inhabitants or more. In other words, the urban population comprises all persons ilving in urbanized areas and in places of 2,500 inhabitants or more outside urbanized areas. The population not classifled as urban constitutes the rural population."
cerex

ble 4. FOPULATION AND DENSITY GROUPS OF PLACES CLASSIFIED ACCORDING TO SIZE: 1960
\begin{tabular}{|c|c|c|c|}
\hline Howe & Masplatisa & \[
\left\{\begin{array}{l}
\text { yout orec } \\
\text { in teftere }
\end{array}\right.
\] & Owiatice mor seagh lite of lowe ene \\
\hline coiren states & 174.83).191 & 13.040.074 & \(\$ 1\) \\
\hline 100.00 or mero & 87.004.689 & 1.281 & 13.036 \\
\hline 1.0x me 1.0we.te & 11.110.091 & 1.000 & 1.ent \\
\hline 8.000 * 000.00 & 10.751.001 & 8.001 & 4.404 \\
\hline B.00 to stu.em & 11.048 .484 & 2.78) & 4.271 \\
\hline .000 te 180.000 & 12.808.904 & 3.539 & 3.510 \\
\hline .ene te m.ene & 14.84.818 & 4.319 & 2.811 \\
\hline .000 te 85.800 & 17.448.304 & 6.984 & 1.382 \\
\hline \% en 10.000 & 0,775.214 & \(3.80{ }^{\text {c }}\) & 1.884 \\
\hline 100 0 \$. 00 & 7.850.080 & 9,248 & 1.404 \\
\hline & 10.040.831 & 3.818 & 1,7t1 \\
\hline rel eopritery & s4.030.aes & 3.800.7in & 18 \\
\hline & * **4.4*) & 23.344 & 3.758 \\
\hline sce.end or mere & 17.044.039 & 1.20 & 13.048 \\
\hline 1,eet to 1.000.000 & 11.218 .091 & 1.000 & 5.904 \\
\hline 3.tete te ter.ten & 10.769.041 & t. 401 & 4.494 \\
\hline 8.00e te 834.000 & 11.658 .458 & t.tie & 4.211 \\
\hline .100 Et 108.ex9 & 83.835.004 & 3.530 & 1.918 \\
\hline .006 020.400 & 0.918 .481 & 2.804 & 2.006 \\
\hline .00 te 25.0x & 1.310.480 & 2.878 & 2.900 \\
\hline mete t9.00 & 1.008.000 & 1.404 & 1,082 \\
\hline & 1.850.79 & 40 & 1.441 \\
\hline Dep anten explieny & 18.940.4.41 & 1.817 & 1.781 \\
\hline & 18.474.046 & 3.423.434 & 84 \\
\hline 500 50 & 6.984.181 & 8.75 & 8.908 \\
\hline .000 te 73.00 & 0.231.004 & 4,046 & 2.872 \\
\hline & 0.017.619 & 3.517 & 1.369 \\
\hline \% 0 te s.000 & c, 849.004 & 4.204 & 1.443 \\
\hline n) tevolewy & 24.040.484 & 1.80e. \(9 \%\) & 13 \\
\hline
\end{tabular}

The distribution of the 1960 U.S. population is shown in Figure 11. A tabulation of U.S. urbanized areas, ranked according to population, is shown in Table 5. Detailed statistics on the land areas, population, and population densities of the central city and urban fringes of the 213 urbanized aress shown in Table 5 are presented in Appendix A. A umary of these statistics is presented in the graphs of Pigures 9 and 12.

The U.S. population data sumarized above are not very satisfactory inputs to the targeting model described in this paper. One 13 really interested in the population densities which will pertain in 1970, rather than those which existed in 1960. Further, the definition of urbanized areas, and the scale on which densities were computed, were not devised for the purpose for which they have been used here. A treatment of \(\mathbb{U} . \mathrm{S}\). census statistics more directly oriented to the needs of civil defense is given in OCD-OEP National Loca-
on Code, but as yet without the presentation of land areas and pulation densities in the central city and the urban fringe.

\title{
Teble 5. rant of o.s. urbanized areas according to the 1960 CEMSUS
}

FIGURE 12. Eatimate of the Population of tha United Stotes for Which the Population Density is \(\geq 0\) Persona/mi \(\mathrm{m}^{2}\) (10:0 Consurs)
E. THE TARGETINO MODEL APPLIED TO A SPECIFIC URBAN AREA

The 1960 population, land area, and population density of the Washington (D.C., ïd., Va.) urbanized area are listed in Appendix \(A\) as follows:
\begin{tabular}{|c|c|c|c|}
\hline Urbanized Area & Population & Land Area
\[
(\mathrm{K} 1.2)
\] & Dansity of Population (Persons/mi. \({ }^{2}\)) \\
\hline \[
\begin{gathered}
\text { Washington (D.C., } \\
\text { Md., Va.) }
\end{gathered}
\] & 1,808,423 & 340.0 & 5,308 \\
\hline Washington & 763,956 & 61.4 & 12,442 \\
\hline Urban fringe & 1,044,467 & 279.3 & 3,740 \\
\hline
\end{tabular}

Purther detalls on the character of this area as a population target are provided by tie map of figure 13, the population data of Table 6, and by an estimate of the amount of this urbanized area for which the population density exceeds any given amount (Pigure 14).

unemutio ma

FIGURE 13. Weshington (D.C., Md., Va.) Urbonized Anea, 1960 Ceneus

Table 6. POPULATION STATISTICS FOR THE WASHINGTON (D.C., ND., VA.) URBANIZED AREA, 1960 CEMSUS

mem.
FiGURE 14. Estimated Area of the Washimston (DC, Md., Vo.) Ubenized Area for Which the Population Dessity Exceeds ary Given Dansity

The total lethal areas(at the 5 psi level) of illustrative attack Levels 1,2 and 3 were sumarized in Table 2. These aress may be translated into the minimum population density to be targeted throughout the whole Onited States through the curve of Figure 9, and thence into the area within the Washington, D. C. urbanized area to be targeted through the curve of Figure 14. The results, together with the number of 1-fir afrbursts or surfacebursts allocated to the Washington area for each attack level, assuning all weapons had a yield of 1 Hir, and all were either alrburst or surfaceburst, are presented in Table 7.

Table 7 shows that for the three illustrative attack levels of Table 2, ainimus of one-fourth, and a maximum of all the Hashington urbanized area - always including all of the District

Table T. MEAPONS ALLOCATION 20 TEE WASHIMGTON URBANIRED anea jor atracks WITH 1-RT LEAPONS

of Columbia -- migit reasonably be considered subjected to a blast overpressure of at least 5 psi (and therefore to a thermal pulse of \(50 \mathrm{cal} / \mathrm{cm}^{2}\)). The total number of 1-HF weapons allocated to this area is seen to lie between 3 and 12, depending on t.ee level of the attack and whether or not targeting was done on the basis of alitursts or surfacebursta. The setual ground eero, for any given type and level of attack, could be selectec in a variety of ways and still subject approximately the same number of permens to 5 pei.

It would be possible to be more precise as to the zost de- sirable ground zepos provided there were population density contour maps of the Washington urbanized area in which the censit'; at any given point is defined as the nuwber of persons included aithin a weapon's lethal area centered on that point. Dee of the lethal area as the unit of area for density computational puyposes would smooth out the substanicial density variations betwean nearby ccmunities when a square mile is the unit area. This means that thsre would be different population densty contours for weapons of different yield, and for weapons of the eame yieli, depending on whether or not they were air burst or surfaceburst.

Fron lie estimate of area to be targeted shown in Table 7 and the lethal areas of the 8- and 64-MT weapons shom in Table 1. It could be concluded that from 1 tc 3 8-NT weapons, or (for attack Level 3) even a single (surfaceburst) 64-EfI weapon would
not be an unessonable assignment of megatonage to the Washington urbanised area. It also follows that a combination of 1and 8-ht weapons (with combined lethal area equal to the area of the density of population to be targeted) or a combination of alsbursts and surfacebursts could reasonably be included in a potential eneny's targeting for this area. Neediess to say; under the asumgtion of an attack on populations, these weapons could be scheduled to arive in many different ways, from many Alferent sources, and at ravied intervals after the comencement of hostilities. Under the conditions of war, all, or none, or scoe frection of those scheduied to be delivered might in fact be delivered, and those that arrived might or might not arrive with eufficient marning for the immediate population affected to take ahelter.

The most impdrtant result of the analysis from the point of VEw of sholter dasign considerat ons is that an attack on popuIation does not necessarily result in a single bowb being targated at the center of each metropolitan area with total population exceeding some given number of persons. Some cities may receive no bombs at all, and others may receive a great many. For example, for e surfaceburst attack on populations with 300 1-NF bombs, approxiwstely half the 213 urbanized areas listed in Table 5 would be allocated no weapons at all, whereas Los Angeles mould be targeted with about 21. These assignments mould change ss the attack level and weapon gield are varied. But the threat to urban populations -- which by 1970 will include 80 percent of the U.3. population - is much greater than that to rural population, and for some urban concentrations -- notably the larger ones - it is much greater than others. Por the Washington (D.C., MA., Va.) urbanized area, Viewed as a population target, the effectivoness of fallout shelters is an attack designed to mainise population fatalities mould likely depend on their ability -- and thwt of the people in them -- to withstand blast Is the range of 5 to 30 psi (see Figure 10) and the associated
thermal effects as well as subsequent fallout. This does not necessarily mean, all things considered, that it is not worthwhile to locate and provision fallout shelters in large urban areas. A full and excellent discussion of the benefits and limitetions of such a program has been recently given by Secretary McNemara, 1 and is reproduced in its entirety in Appendix E. The present treatment illustrates some of the implications of the Secretary': remarks when considered from the differing point of view of persons in the 213 largest urbanized areas of the United States listed in Table 5.

\footnotetext{
Hazrings on the Department of Defense Appropriations for FI 1964, D.S. House of Representatives, Part I, Page 110 (Secretary McNamara's statement given on Pebruary 7, 1963).
}

\section*{PART II. THE INTENSITY AND DISTRIBUTION OF INITIAL AND RESIDUAL RADIATION}

\section*{A. GEMERAL COMSIDERATIONS}

In contrast to the blast and thermal effects of nuclear meapons, the initial gamma rays and neutrons from a nuclear burst, and the delayed gamma and beta rays from fallout are a threat to blological systems, but not to structures. The hasard is complex and subtle in that the potentially harmful rediations are not sensed by the body and the many different blological effects are delayed in time from an hour or so to many years following exposure. The individual fallout particles, which contain the radioactive byproducts of the fiscion and fusion processes imbedded in or on a mass of inert materials, cover a wide range in size. Some are as big as crains of sand, others as small as particles of dust. In highly conteainated areas, the total bulk of fallout materia: deposited from a surfaceburst would be clearly visible in daylight as long 3 metcorological conditions permit the particles to settle and be retained on follage or on smooth surfaces. It is very difficult to predict when the fallout will come to earth, but it is known that potentially lethal concentrations of radioactivity can be deposited hundreds of miles from the point of detonation, and that it can cover an area an order of magnitude greater than the area where fatalities are produced by blast. The hazard persists in time. Although the immediate and greatest danger is from gemea (X-ray like) radiations srom the fallout particles, these particles also enit beta rays (electrons) which can cause burns if fresh fallout comes in contact with the skin and is not promptly washed off. There are several short- and long-lived
radionuclides among the fission products -- notably I-131 (half11fe 8 days), Sr 90 (half-11fe 28 years), and Cs-137 (half-1ife 30 years) -- which can produce an internal hazard via the food chain:

The type and amount of radioactive material which may be deposited in an area where shelters are to be constructed affects sheiter design directly by indicatir.j the amount of shielding necessary to hold radiation exposure of the shelter occupants to within specified limits, and indirectly bjinPluencing the length of time the shelter must be occupied, continuousiy or partially, to hold dose levels within specified limits. Shelter stay times are also affecied by fallout levels In other than the immediate area of the shelter, and by the level of radiation exposure which is to be permitted over various intervals of time. In fact, almost every way in which fallout affects civil defense activities outside the shelter has an influence on shelter stay times, and thus on the space requirements within the shelter for food, sipplies, and. equipment.

In developing estimates as to the levels of blast, thermal pulse, and initial nuclear radiation that might reasonably te anticipated at specific locations in the United States in the event some fraction of a nuclear attack on this country were targeted in such \(\varepsilon\) way as to maximize population fatalities, the principal rariables are the numbers and jields of the yeapons employed, whether they are assumed to be burst in the air or on the surface, and the targeting criteria.

Comparable estimates of the external gamma doses and dose rates from the fallout involve additional important uncertainties:
- The speed and direction of the wind at all aititudes up to the top of the mushroom cloud, and at all locations throughout the United States,
- Precipitation patterns throughout the United States,
- The level and distribution of attack on military targets,
- The fraction of the total yield of each weapon due to f1ssion,
- A mothod of estimating the distribution and deposition times of the radioactivities from a single surfaceburst, when all the factors listed above are sfecified precisely.

Lerge uncertainties and variations in estimates of fallout doses and dose rates at specific locations are introduced by each of these factors, in addition to the uncertainties present in estimates of the distribution and intensity of the immediate effects.

\section*{B= RADIATIOA DOSE UNITS \({ }^{1}\)}

The effect of nuclear radiations on a biological system is expressed in terms of an "absorbed dose". The rad is defined as the absorbed dose of any nuclear radiation which is accompanied by the liberation of 100 ergs of energy per gram of absorbing material. Although all ionizing radiation (gama rays, X rays, beta rays, neutrons, protons, alpha particles, etc.) are sapable of producing similar biological effects, the absorbed dose measured in rads which will produce a certain biolczaical effect may vary appreciably from one typ; of radiation to another. This difference in behavior is expressed by mans of the "relative biological effectiveness" (RBE) of a particular nuclear radiation. The REE is defined as the ratio of the absosbed dose in rads of gamma radiation to the absorted dose in rada of the given radiation having the same biological effect.

The value of the RBE for a particular type of nuclear radiation denends on several factors, including the energy of the radiation, the kind and degree of biological damage, and the nature of the organism or tissue under conzideration.

\footnotetext{
The Effects of Nuciear Heapons, op cit., Paragraph 11.80 et seq; and RAND R-425-PR A Review of Nuclear Explosion Phenomenon Pertinent to Protective Construction, H. L. Brode, May 1964.
}

The rom is defined as (dose in rads) \(x\) (RBE).
The roentgen is a measure of radiation exposure dose from as or \(X\) rays (a; opposed to absorbed dose), and is defined the quantity of \(X\) or gamma radiation such that the associated juscular emission per \(0 . C 01293\) grams of air produces, in air, s carrying one electrostatic unit of electricity. (The anss me \(\mathrm{cm}^{3}\) of dry atmospheric air is 0.001293 arams at \(0^{\circ} \mathrm{C}\) and mof mercury pressure.)

The RBE for gamma rays is approximately unity, by defini1, although it varies somewhat with the energy of the lation. Because one roentgen exposure dose gives rise to at one rad absorbed dose in tissue for photons of interLate energy (0.3 to 3 mev), the absorbed dose for gama (or rays is often stated, somewhat loosely, in roentgens.

The RBE for beta particles is close to inity. The RBE for \(2 a\) particles from radicactive sources nas been variously re:ed to be from 10 to 20, but this may be too large. For lear weapon neutrons, the REE For acute radiation injury is taken as one, but it is appreciatly larger where the bicLcel effect considered is the formation of opacities of the 3 of the eye (cataxacts).

\section*{SQUIVAIENT RESIDUAL DOSE (BIOLOGICALLY EFFECTIVE DOSE)}

Human exposure to fallout radiations can lead to different ss of biological damage;
a. Sickness or death within 2 hours to 6 monthe, depending on the total dose delivered and the dose rate and time interval over w.ich it is celivered,
b. Shortening of ilfe and the development of various kinds of mallgnant neoplasms from 1 to 20 years following exposure,
c. Changes in the genetic material of tise indi"idual exposed which may result in the genetic death of a future descendant -- perhaps many generations later -- and/or in some degree of physical disability to several descendants.

Dasages of Types \(\underline{b}\) and \(\underline{c}\) are probably also dependent on the dose rete and the time interval over which the dose is delivered, but to a lesser extent than the type of injury listed under a.

The notion of biological dese or equivalent residual aose (1aD) is an attempt to equate the cilnical manifestations of radiation injury of Type a resulting from a protracted dose (1.e.g dose dellvered over a period greater than about four days) with brief dose (a dose delivered over a period less than four days). The assumptions made for computing the equivaient residual dose may be described as follows. Any radiation dose may be considered as consisting of two parts, a reparable doss, \(D_{R}\), and an irreparable (permanent) dose, \(D_{P}\). The irreparable cose, \(D_{P}\), consists of 10 percent of the total dose. The reparable dose, \(D_{R}\), is constantly being repaired by the body at a rata of about \(2-1 / 2\) percent per day. Thus if \(r(t)\) is. the dose rate in roentgens/hour,
\[
\frac{d D_{P}}{d t}=0.1 r(t)
\]
\[
\frac{d D_{R}}{d t}=0.9 r(t)=0.00104 D_{R}
\]

At any time after irradiation stops, the dosage which has been sccumulated over a period of time is assumed to correspond, in its clinical manifestations, to a brief dose \(=D_{P}+D_{R}\).

The implications of this concept is that one-tenth of any dose accumulated is permenent es regards damage of Type a above, and that the effect of the remaining nine-tenths of the accumulated dose is constantly being repaired in such a way that any time lyradiation stops, only one-half of the reparable dose \(D_{R}\) will remain after 30 days.

The decay rate from a given amount of fallout deposited on the ground is such that the equivalent residual dose accumulated at a point three feet above the ground from one hour following
etonation reaches a maximum at about four days following deonation and this maximum is approzimately equal to the four-day otal dose. If the equivalent residual dose is computed tarting six hours after detonation, it reaches a maximum at bout one week following detonation, and this maximum is approxmately equal to the total dose accumulated from six hours to ne wesk. Since the total dose from \(s i x\) hours to four days is bout 90 percent of the total dose from \(s i x\) hours to one week, nd an even larger fraction of the one-week dose is accumulated rom one hour to four days the maximum biological dose from any allout deposited between one and six hours (or thereabouts) 111 be approximately equal to the total dose accumulated during he first week.

The clinical features of radiation injury of Type a esulting from various levels of brief or equivalent residual oses are described in Appendix \(C\).
- InITIAL nuclear radiation

The initial nuclear radiation from a weapon burst is deIned as that emitted by a weapon burst and its radiosctive byroducts within one minute from the instant of detonation. As civil defense hazard, it consists of high-energy gamma photons nd neutrons. For a 20-KT device, abcut 80 percent of the total arma dose received is delivered within three seconds. Por a -rF device, 80 percent is delivered in about eight seconds. he neutrons are released essentially instantaneous 1 y .

Table 8. INITIAL DOSE yERSUS DISTANCE - 1 MT \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { senterte } \\
\text { (e4) }
\end{gathered}
\] & & (restrex) & overprestere
(asi) \\
\hline 8. & 24 & *. 18 & -1 \\
\hline 1.8 & -1w & +11.0 & - \\
\hline 1.1 & 14.30 & ct.04. \({ }^{4}\) & - d \(^{\text {a }}\) \\
\hline e. & + & \$173.040.t & \(\pm 208\) \\
\hline
\end{tabular}
 Of ine mid

An estimate of the relative contribution to the total cose (in rads or rems) from the initial gama photons and neutrons is shown in Table 8.
an important reature of the initial gama radiation as opposed to the residual gamma
madiation is the greater penetrability of the initial nuclear radiation. The tenth-value thickness of earth for initial gamma radiation is about 26 inches, whereas it is cnly 12 inches for the residual gama radiation. The overall radiation reduction (protection) factor for a given thickness of earth for each of these two types of radiation is shown in Pigure 15.

Pigure 16 shows the initial nuclear radiation and overpressure as function of range and yield for a surfaceburst. 1 According to Figure 16 , the initial nuclear radiation from a I-NP surfaceburst is less than one rem wheneter the overpressure is less than 5 psi. However an overpressure of 30 psi (the approximate radius of the fireball) corresponds to an initial dose of \(10^{4} \mathrm{rem}\), and an overpressure of 100 psi to an initial dose of about \(2.6 \times 10^{5} \mathrm{rem}\), for a 1 -HI burst.

These estimates are qualified in the Effects of Nuclear Heapons as follows (par. 8.27):

The data are based on the assumption that the average density of the air in the transmission path, between the ourst point and the target, is 0.9 of the normal sea level density. Because of variations in weapons design and the different characteristics of the gamma rays associated with fission and fusion, as well as for other reasons (par. 8.85) the gama ray doses calculated from Figs. 8.27 a and \(b\) cannot be exact. For yields from about 1 to 100 kilo tons THT equivalent, they are rellable within a factor of two or so; from 100 kilotons to 1 megaton, within a factor of 5 ; end above 1 megaton, within factor of about 10.0

The data of Figures 15 and 16 illustrate an important consideration for the design of blast shelters in the 30 to 100 psi range; namely, that protection against blast and residual radiation does not autonatically guarantee protection against initial radiation. Suppose, for example, a 30 psi shelter has a PF of 1000 against residual radiation -- i.e., the protection equivalent to sout 36 inches of earth. The same thickness of earth

\footnotetext{
From Pig. 2.16, discussion p. 46, USAEC CEX-62.2 Nuelear Bomb Effects Computer, Pletcher et al, Pebruary 1963.
}

FIGULE 15. Radiation Protection Factor Vs. Earth Thickness for Initial and Residual Gozma ledietion

FIGURE 16. Initial Nesclear Rediation and Overpressure as A Function of Ronge and Yeild Eor Sufoce Bunsts
would give a protection factor of about 25 from the initial radiation. A protection factor of 25, applied against a dose of \(10^{4}\) rem at the 30 psi blast level, would result in a total inshelter dose of 400 rem. Similarly a 100 psi blast shelter with \& \(P F\) of 10,000 (\(48^{\prime \prime}\) earth) against residual radiation gammas might offer a PF of only 70 against the initial gammas. Since 100 psi corresponds to \(2.6 \times 10^{5}\) rem for a 1 -Mr surfaceburst (Figure 16), there is a possibility at the 100 psi level of an in-shelter dose of about 3700 rem. These estimates are very rough because no consideration has been given to the different geometrical relationships between the radiation source and the shieiding material in the two cases, and because of the large
uncertainties in the initial radiation dose level noted above. 'urther, they are based on a I-MT surfaceburst. They do illus;rate, however, the necessity to take initia? radiation into iccount when designing blast shelters in the 30 to 100 psi range, and the very large amount of shielding that may be re[uired to protect against initial nuclear radiation at these .evels of blast.

\section*{\(\therefore\) RESIDUAL NUCLEAR RADIATION}

Residual nuclear radiation is defined as that radiation :mitted from the radioactive byprodacts of a nuclear explosion ater than one minite from the instant of the explosion. The ources and characteristics of this radiation vary with the per:entage contribution of fission and fusion to the energi release if the weapon. Those radioactivities induced by neutron capture \(n\) earth and bomb materials are of immediate interest only in reapons whose fission fraction is less than about 10 percent. \({ }^{1}\) therxise, as shown later, the gamma radiation they emit is ominated by that from the fission products.

When uranium (or plutorifum) undergoes fission, about oneenth of 1 percent of the mass of the fissioning atoms is conerted. to energy. The rest is accounted for by over 200 ifferent isotopes of 36 different elements. Each fissioning ranium atom gives rise to a pair of fission products whose mass \(s\) almost that of the unsplit atom. For each kiloton of energy

Por some weapons, neptunium 239 (half-11fe 2.3 days, average gama photon energy \(=0.27\) mev) may be created in such quantity as to constitute a significant hazard in addition to the fission products. See Table 10.

FIGURE 17. Tinss of Foll of Porticles of Different Sizes from Various Altinudes and Percantoges of Totel Activity Corried (hegreduced from The Efiects of Nucleor Wecpons"
released, \({ }^{1} 56\) grams of uranium \(=1.45 \times 10^{23}\) uranium atoms are flssioned.

When a nuclear meapon is burst in the air, the mass of the fallout particles consists of the weapon casing and the fission Sragments. The particle diameters lie largely in the range of 2 to 12 microns, and most of the particles take weeks or months to reach the earth. Under these circumstances most of the radioactivities which give rise to an external gamea radiation hazard decay harmlessiy in the air. However, long-lived internal
\[
\begin{aligned}
& \text { IBy definitions, } 1 \text { kiloton is } 10^{12} \text { calories }=4.2 \times 10^{19} \text { ergs } \\
&=1.15 \times 10^{6} \text { kilowatt } \\
& \text { hours }
\end{aligned}
\]

4-4943
FIGURE 18. Approximate Nuslear Cloud Dimensions
enitters (strontium 90, half-life 28 years; cesium 137, h:1f1ife 30 years), if deposited in sufficient concentrations, can still present an internal hazard via the food chain.

The approximate distribution of the radioactive material from a surfaceburst on particles of different sizes and the time required for these particles to fall from different altitudes are shown on Pigure 17. The approximate height and radius of the top of the mushroom cloud into which the fallout particles are lifted by rising air currents before being scattered by the winds are shown in pigure 18.

Many different mathematical models of varying degrees of complexity have been developed to predict when and where the
particles of different sizes will be redeposited on the earth. It is evident that the answer must depend on the speed and direction of the winds, or more exactly, on the speeds and directions of the wind at different altitudes and different locations of the fallout pattern. The results of the various models differ widely, \({ }^{l}\) and no one is sure which model is more correct or whether or not any of them are sufficiently accurate to give reliable estimate of what doses and cose rates will actually be experienced at various locati-ns on the ground at verious times following a nuclear detonation.

An illustration of the difference between a predicted and an ectual fallout pattern is shown in Figure 19.

In spite of the great difference possible between predicted and actual fallout patterns, it is assumed that idealized patterns are useful as an indication of the shapes and levels of fallout deposition patterns which could reasonably be anticipated as a result of surfacebursts of different yields, under different conditions of wind. It should be noted that currently available fallout models assume that no precipitation or irregular wind conditions occur in the area where the fallout particles are deposited.
F. DOSES AND DOSE RATES FROM A UNIFORM DISTRIBUTION OR FISSION FODOCTS CN THE GROUND

It is a eommon assumption of most fallout models that only the fission product radioastivity will be directly considered In the computations, and that the fission products will be considered unfractionated -- that is, the relative concentrations of the many different radionuclides present in any sample of fallout are the same as for the radiosctive debris taken as a whole.

\footnotetext{
M1D-7632 Radlogetive Fallout Irom Ruclear Heapons Tests, proceedings of a conference held in Germantown, Haryland. Soveriber 15-17, 190: "SAEC.
}

FIGLIE 19. Predicted and Actual Follous Dose-rete Conseurs

With this assumption, there exists a simple, time-invariant scription of the fallcut contamination level at a given locaon, nasely the number of xilotons-equivalent of fission oducts deposited per unit srea. External gama dose rates d accumulated doses three feet above smooth, infinite plane ntaminated to level of 1 KT per square mile are shown in tle 9.

Table 9. Gama dose rate and accumolated dose 3 feet ABOVE A SROOTH, INFINITE PLANE \({ }^{\text {a }}\)

As aitemate, time-independent methed of deseribing a fallout contamination level is in terms of the roentgens/hour infinite plane dose rate, normalized to one hour -- that is assumg that all the fallout which is eventually deposited at a civen location has in fact teen deposited at one hour following the detenation. The relation between those two deseriptions is indicated in Table 9 ; 1.e., \(1 \mathrm{kT} / \mathrm{mi}^{2}=3720 \mathrm{r} / \mathrm{hr}\) at 1 hr .

Table 10. AFYROXIMATE CONTRIBUTIONS OF TRJUCED ACTIVITIES AND PISSION PRODUCTS TO FALLOUT INEINITY DOSE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Retivity} & \multirow[b]{2}{*}{Malf.life} & \multirow[b]{2}{*}{Average Me: 1 Disiategration} & -10 & Pal Hea & Iatia & 2.0 & ir eog
nat destion
titurgs & argens & Crean yeapon Supficetapsz \\
\hline & & & Low & Pypical & 219* & Le= & Pyoical & 4198 & Typleal \\
\hline U-240. & 14.2 mis. & 0.34 & 10 & 60 & - & 12 & \(\checkmark 0\) & 300 & \\
\hline Ma-24 & 15 mrs. & 4.15 & 50 & 258 & 6. & 1 & 3 & 10 & \\
\hline & 2.33 dtys & 0.11 & & 250 & see & 40 & 250 & 900 & \\
\hline (-237 & 6.75 days & 0.16 & 35 & 190 & 354 & 35 & 150 & 350 & \\
\hline Fe-59 & 45.1 day: & 1.10 & 0 & 1 & 8 & 0 & , & 2 & \\
\hline Co-58 & 72 days & 0.97 & 1 & 2 & 20 & 1 & 2 & 20 & \\
\hline C0-37 & 270 days & 0.13 & 0 & 1 & 10 & - & \(?\) & 10 & \\
\hline (man-54 & 300 days & 0.04 & & 3 & 30 & \[
1
\] & 1 & 10 & \\
\hline co-60 & 5.3 yrs. & 2.50 & 3 & 20 & 3 * & 3 & 10 & 30 & \\
\hline Mn-56 & 2.6 urs. & 1.20 & 15 & 103 & 60 & - & 0 & - & \\
\hline Tecal 1me & ced & & & 837 & & & 4.82 & & 500 \\
\hline Fissioe & roducts & & & ceoe & & & ccoe & & 600 \\
\hline
\end{tabular}
 fisston yitid. Fisston groducts assmed unfictiseates. Infinity dest use free I mour te mours.

It is clear from Table 9 that the doses and dose rates sxperienced at a given locativi at various times following a luclear burst will depend very much on how lonf it takea for 111 the fallout which is going to be deposited at a particular Location to be deposited. Falluut deposition times, as with other featurgs of the fallout models, are subject to large un:ertainties. At areas ciose to the point of detonation (say In areas of 30 psi overpressure or more) scze fallout (or ;hrowout) will begin within minutes. At greater distances -It is estimated that the time of fallout arrivai is about 24 inutes. One bundred miles from the point of detonation the Pallout say not begin for to 6 hours and 1 t mey last for several hours.
an estimete of the approximate contribuilon of induced ictivities to the infinity (opproximate 1 year) dose from clean und normal weapons is shown in Table 10.

\footnotetext{
The Effects of Nuclear Hoapons, op sit., par. 9.84.
}
0. CONTAMINATION LEIELS A:H ACCUMULATED DOSES IN AN IDEALIZED PALLOUT IAT ERN: SCALI:; WITH IEELD AIID NIND

Fallout particles of a size large enough tc be visible against a white sheet or paper -- say those with diameters in excess or 50 microns \({ }^{1}\)-- are for the most part deposited within 24 hours from the time of detonation. They contribute the most immediate and most predictatle threat from the fallout of a single-weapon burst. That portion of the fallout winich occurs within 24 hours is (somewhat arbitrarily) called early fallout, as opposed to delayed fallout which cccurs after 24 hours. It is the doses and dose rates from eariy fallout which one attempts to define with an idealized fallout pattern. For land surfacebursis in the megaton range, it is estimated that from 50 perceit to 70 percent of the radioactivity created by the nuclear explosion will be deposited as early rallout.

Sample fallout patterns from the fallout model described in The Effect of Nuclear Neapons are shown in Figures 20 and 21. Figure 20 illustrates how the total dose may accumulate durire the first 18 hours foilowing detonation. Figure 21 shows the time-invariant level of contamination, and may be used in conJunction with Tajie 9 to obtain accumulated doses and dose rates once all the fallout at a given location has been deposited.

The dose rates and doses shown in Figures 20 and 21 are for a l-MT surfacebu. \(t\) of 100 percent fission yield. They must be scaled down by a factor equal to the fraction of the total yield due to fission. This fraction is normally taken as 1/2 for illustrative purposes, although fractions as iow as 1/3, and as high as \(2 / 3\) indicate the general range of uncertainty introduced by this factor.

FIGURE 20. Total Dose Contours from Early Fallout at 1, 6, and 18 Hours After Surfoceburst with 1 MT Fission Yield (15 mph Effective Wind Speed).

-race-8
FIGURE 21. Ideolized Unit-time Reference Dost-rate Pattem for Early Follout from - I MT Fission Yield Surfaceburst (15 mph Effective Wind Speed).

An important factor to consider in connection with the fallout contours given in Pigure 21 is how they scale with yield and wind. This is described in The Effect of Nuclear Heapons as follows:
"In order to obtaln the idealized fallout pattern for a fission yield of \(F\) megatons, the values of the various contour ilnes in Fig. 9.73 zay be multiplied by F. Thus, for \& weapon having a total jleld of \(M\) megatons with 50 percent of the energy derived from fission, the factor would be 0.5M. This scaling procedure, although highly simplified, gives reasonably good results for surface
 yield. However, the higher values of dose rate (and dose) are probably overestimated for fission yields in excess of 1 megaton. Except for isolated points in the immediate Vicinity of ground zero, observations indicate that unittime reference dose rates greater than about 10,000 roentgens per hour are unlikely. A possible reason is that as the weapon yleld increases so also does the initial volume of the radivactive cloud; hence, the maximum concentration of activity in the eloud does not change verj much with the yield. The faliout contamination moderately near ground zero, where the dose rate is high, will thus not increase in proportion to the yield, as the sample scaling law given here implies. At greater distances downind tie law is much more reliable because as a result of spreading by the wind, the initial cloud volume has relatively liftle influence on the concentration of fallout on the ground.
9.76 It should be noted that the proportional scaling procedure makes no allowance for the erfect of the total i.e., fission pius fusion, yield; thus it predicts tice same fallout pattern for a l-megaten all-fission detoration as for a 2-megatcn 50-percent Eission explosion. Actually, the unit-time reference dose rate near ground zero might be somewhat smaller in the latter case because the same amount of radicactivity would be spread througr. a larger volume of the initial cloud. At greater distances downind from the burst point the effect of the initial cloud concentration is small, as indicated above. Purthermore, at such locatiuns the dilution effect may be compensated by the fact that the cloud from the z-megaton explosion will probably rise higher, thus increasing the distances at which particles from the same relative position in the cloud will reach the ground.
"9.77 As stated in 9.65, the effective wind speed and direction are the mean values from the ground up to a certain level in the radioactive cloud, depending on the total yield of the explosion. As a very rough approximation, the atwospheric layers over which the wind is to be aversged as a function of the weapon yleld, are as follows:

Total yield
Less than 1 IT
1 MT to 5 MT
More than 5 MT

\section*{Layer}

Surface to 40,000 reet Surface to 60,000 feet Surface to 80,000 feet

These values should be adequate for the rough evaluation of hypothetical fallout situations based on the idealized patterns. More elaborate prediction schemes take into consideration the winds at different levels instead of a single average effective wind.
"9.78 If there is no directional wind shear, then doubling the wind speed would cause the particles of a given size to reach the ground at twice the distance from ground zero, so that they are spread over roughly twice the area. Based on this conciusion the following scaling laws ma; be used in connection with the idealized iallout pattern: (a) the unit-time reference dose-rate vaiue for each contour in the 15 -mile-per-hour wind velocity pattern in Pig. 9.73 is multiplied by \(15 / v\) where \(~ v\) is the actual effective wind velocity in miles per hour and (b) the downind distances in Fig. 9.73 are multiplied by \(v / 15\). For a 30 -mile-per-hour wind, for example, the contour values would be halved and the distances doubled.
"9.79 It will be apparent that in scaling for either yield or wind speed the values of the dose-rate coritours are cinangei. The scaled downind extent for any given
contour valuz may readily be obtalned by plotilng the scaled dose rates versus the scaled downind distances on logarithmic graph paper and reading dowimind ilstances corresponding to the desired contour value fram the re－ sulting smooth curve．
＂Joth the 1dealizei 15－mile－per－hour patter：in Fig． 9.73 and the wind scalinf procedure tend to maximize the down－ wind extent of the dose－rate contours since siey involve the postulate that there is very little（or ：．0）wind shear．This is not an unreasonable assumptizn for the continental United States，since the wind si．jar iz osner－ ally small at altitudes of interest from the standpoint of fallout．If there is considerable wind shear，e．g．， \(20^{\circ}\) or more in the lower half of the mushroom heas，the fall－ out pattern would be wider and shorter than tiat based on Pig．9．73．The actual unit－time reference dこse rate at a specifled donnwind distance from ground zero for a given effective wind speed would then be smaller t \(\ddagger\) ．an predicted． The crosswind values at certain distances mizit，however， be increased．
＂It may be noted that the method for wi：．scaling de－ scribed in 9.78 may be approximated by anotrer procedure； the reference dese－rate contour values are ieft unchanged but the distances in Fig． 9.73 are multiplies by（y／ly）1／く． If considerable wind shear exists，a better 三\(\equiv\) ㅇproximation may be obtained by using the factor（v／15）1／3．The results of this approximation are not rellable for dise rates greater than about 1，000 roentgens per hour for reasons similar to those given in 9．75．＂

The ENH model described above differs in a number of ways with a more comprehensive and detailed model deveioped by Pugn and Caliano \({ }^{1}\) and subsequently modifled by Pugh in 1961 in con－ Junction with a Pallout Subcommittee of the Advis：ry Committee on Civil Defense，National Academy of Sciences，for use by the National Resources Evaluation Center．\({ }^{2}\) A tabulation of the WSEG－NAS medel results for a number of yields and ainds of interest is presented in Appendix \(D\) ．

\footnotetext{
IwSEG Research Memorandum No．10，An Analytic Model of Close in Deposition of Fallout for Use in Operational－TyE三 Studies， George E．Pugh，Robert J．Gallano，October 1959．
\({ }^{2}\) Ferber，Gilbert J．and Heffter，J．L．，A Comparison of Failout Model Predictions with a Consideration of inind Effects，p． 122 ， et seq．，AEC TID－7632．
}

One difference between the ENW and WSEG-NAS models is that

 over a 742 square mile area for a \(100-\mathrm{FT} 100\) percent fission surfaceburst, a lo-knot wind, and an effective fallout shear of 0.1 knot per 1000-foot altitude.
H. METEOROLOGICAL DATA FOR USE \(\because=-H\) FALLOUT PREDICTION MODELS

The principal information reeded to apply the models described above to deternine the fallout at any designates point 18:
- The yield, fission yield, and burst points of the weapons contributing fallout to that point,
- The effective wind speed and direction (and for the WSEGHAS model, the effective fallout shear) at the points of detonation of the weapons contributing fallout to that point.

The wind speed and direction could, of course, be almost anything. There are, however, seasonal regularities in wind conditions at given places througiout the country. These are described in some detail in Chapter 5 of DOD-OCD Federal Civil Defense Guide. \({ }^{1}\) The most important data and discussion are reproduced in Table 11 and in the followitg paragraph:
"Daily Variability
It should be noted that the data in Table XI, this report, and Pigures 9 through 13 represent mean or averaged data, based upon five years of upper alr observations. On any one day, the actual direction and speed may vary considerably from the seasonal or annual mean. Table II shows the ratios of the vector standard deviations to the average wind speeds for winter and surmer and the range of the mean seasonal direction in degrees for each of the 52 rawin locations. The former tabulations indicate the ratio of the scatter to the scaler magnitude of the vector and thus,

\footnotetext{
IDOD-OCD, Pederal Civil Defense Guide, Part E, Chapter 5, Appendix 6, Application of Meteorological Data to RADEP, December 15, 1963.
}

> Eable 11. CLIMATOLOGICAL VEA: AIND DIRECTION (D) AND AンERAGE SPEED (S) IN RNOTS IN T:EE LAYER FROM 80,000 FT. ALTIT: TO SURFACE OP THE EARTH A:D VEGOR STAUDARD DEVIATIO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Lectetion} & \multicolumn{3}{|c|}{Spent.} & \multicolumn{3}{|c|}{5,metr} & \multicolumn{3}{|c|}{Fil?} & \multicolumn{3}{|c|}{ufeier} & \multicolumn{2}{|r|}{1-0.40} \\
\hline & 3 & 5 & 1 & 0 & 5 & \(\geqslant\) & 0 & 5 & * & 3 & 3 & , & \(\bigcirc\) & 15 \\
\hline Altrent & 27 & 02.5 & *. 3 & 271 & 13.7 & 61. 1 & 275 & 04.1 & 67.6 & 648 & 02.2 & 09.1 & 273 & 4 \\
\hline Alsenersee & 38 & 24.9 & 19. & 335 & 38. & 13.2 & 095 & 17.1 & + 19.5 & 032 & 14.9 & 22.1 & se" & - 3 \\
\hline Ameterage & 38 & 08. \({ }^{\text {e }}\) & 19. & 545 & 21.7 & 17.0 & 053 & 14.3 & 20.4 & 910 & 17.7 & 20.: & 080 & ; \({ }^{\text {s }}\) \\
\hline mante & 83 & 12. & 22.1 & 944 & 04.0 & 18.9 & 016 & 85.0 & 21.7 & 080 & 24.6 & 21.5 & c88 & 'g \\
\hline die seftas & 81 & 14.7 & 18.1 & 230 & 08.1 & 13.8 & 043 & 15.5 & 29.0 & 084 & 35.6 & 21.2 & 984 & '3 \\
\hline Steath & & 17.1 & 20.6 & 0ts & 16. & 15.1 & 407 & 11.9 & 20.5 & 108 & 27.1 & \(13:\) & 095 & \(\because\) \\
\hline terse & 205 & 18.6 & 24.0 & 098 & 13.7 & 14.6 & 097 & 14. & 20.1 & 102 & 33.5 & 12.3 & 292 & 19 \\
\hline lemervill. & 47 & 14.4 & 15.1 & \(8: 3\) & 12.1 & 10.7 & 2ent & 04.1 & 117.1 & 217 & 29.5 & 16.5 & \(0: 3\) & -3 \\
\hline Sopfele & ers & 28.3 & 21.1 & 107 & 16. & 18.5 & 093 & 21. & ! 22.4 & 539 & 37.4 & 23.* & 232 & 27 \\
\hline terrues & 01 & 28.1 & 18.7 & 161 & 09.5 & 11.8 & 083 & 14.0 & 19. & 243 & 11.0 & 17. & 486 & 19 \\
\hline Capleen & 081 & 19.8 & 22.1 & 093 & 16.4 & 18.7 & \(0 \cdot 3\) & 29.9 & |23.1 & 081 & 19.1 & 24. & 3R4 & : \\
\hline cmaplest \({ }^{\text {ch }}\) ! & 091 & 27.5 & 22.1 & 219 & 03.1 & 13.2 & 078 & 18.0 & 21.6 & cte & 42.4 & 19.1 & 093 & : \\
\hline columele & 601 & 18.2 & 28.6 & 29\% & \(00^{4}{ }^{\circ}\) & 134 & 098 & 23. & 21.3 & 291 & 18.5 & 23.3 & 292 & : \\
\hline Onfter & 682 & 28.7 & 23.5 & 113 & 11.5 & 4.9 & 084 & 24. & 20.9 & บิง 0 & 11.5 & 23.: & : 32 & : \\
\hline 80w met & 909 & 20.1 & 23.2 & 271 & 10.0 & 13. 3 & 103 & 18.6 & 19.7 & 104 & 26.0 & 22 : & & ? \\
\hline teape tity & 03 & 23.1 & 28.1 & \(0 \%\) & 0.7 & 11.1 & 094 & 20.0 & 20.7 & 093 & 32.2 & 21.2 & 21 & 1: \\
\hline ctanten & Hest & 12. & 17.8 & -6\% & 0.t. 5 & 15.3 & 102 & 23.0 & 10.5 & 109 & 21.1 & 11.: & 183 & . \\
\hline E1) & H\% & 17.7 & 29.6 & 058 & 12.9 & 13.0 & 692 & 18.9 & 114* & 102 & 24.0 & 23: & 909 & ;- \\
\hline fatrimets & & 5.8 & 18.2 & 048 & 4.6 & 14. & 041 & [3.3 & 18.4 & 045 & 18.7 & 25.5 & ? \(?\) & ', \\
\hline Port mertit & 42 & 31.5 & 2t. 4 & 282 & 03.1 & 1321 & 494 & 16.5 & 20.7 & 485 & 17. & 22.1 & \(\cdots\) & ? \\
\hline 2.42-1:53 & 0 & :8.8 & :1.1 & -5: & 16 & 38.81 & :** & 24.1 & -2. & 1 m & 10.0 & 21. & - 4 & E. \\
\hline Crowe Bay & 348 & 21.7 & t1. 3 & 155 & 19.1 & 16.1 & -3\% & 26.2 & 22.1 & -3* & 12.4 & \(21 .:\) & 237 & : \\
\hline creenseere & *) & 30.2 & 22.3 & 17' & cs. & 16.5 & 291 & 22.3 & 21.5 & 29\% & 13.1 & 21.: & 27 & - \\
\hline memestest & 094 & 29.0 & 21.4 & 104 & 13.6 & 18. & 051 & 29.0 & 24.2 & cts & 42.7 & 23.2 & 37: & : \\
\hline feteraerseat Pelle & 394 & 16.3 & 23.2 & \%38 & 17.1 & 16.5 & 108 & 24.0 & 21. & 187 & 29.9 & 21.2 & 1. & : \\
\hline dectrenotife & 394 & 87.7 & 20. & 25) & 0.3 & 12.8 & 003 & 16.5 & 20.7 & 0rt & 35.0 & 18.2 & 2\% & \\
\hline lace ceeples & 031 & te. 6 & 13.0 & 261 & - 2 & 121 & 094 & 15.3 & 19.8 & 082 & 31. & 19.1 & ces & \(\cdots\) \\
\hline Liset & * 9 & 18.0 & 13.1 & 239 & 04.5 & C3. & 123 & 01.0 & 12.0 & 128 & 13.1 & 16.3 & \(1 \%\) & :- \\
\hline Li8tio mett & 205 & 22.1 & 21.0 & 112 & 01. & 13.2 & 098 & 19.7 & 20.2 & 085 & 43.5 & 21.2 & -03 & \\
\hline towy toect & 63 & 24.7 & 20.4 & & 07. & 11.2 & 082 & \(12 \%\) & 17.1 & 101 & 21.2 & 23.3 & : 12 & : \\
\hline menteatil & 387 & 29.5 & 22.1 & 188 & 16.7 & 1: & 203 & 11.3 & 21.0 & ces & 10.8 & 122 & \(30:\) & :3 \\
\hline matiere & 100 & \(18 \pm\) & 21.1 & 684 & 12. & is.0 & -12 & 11.6 & 22.2 & 099 & 20.1 & 14. & & \(\cdots\) \\
\hline Wromt & 097 & 21. & 17.2 & \(23 \%\) & 12. & 12.7 & 830 & 04.3 & 18.4 & 083 & 235 & 17.2 & -a & \\
\hline cautgomery & 312 & 19.) & 22.8 & 246 & 05.4 & 13.1 & cat & 10.5 & 21.5 & 084 & 12.8 & 31.1 & :y & \\
\hline We. cleanes & \%ts & 25.2 & 340 & 93 & 10.2 & +6. 6 & 38 & 26.9 & 12.1 & 03: & 31.0 & is. & : 2 : & "* \\
\hline Tantucter & 390 & 24.1 & 24.1 & 29: & 10.1 & ? & 19 & 30.3 & 21.6 & - 5 & 48.6 & 14.: & -1 & \\
\hline caterill. & 8 & 31.2 & 22.1 & 134 & E1. & 13.3 & 6 & i2. & 112 & 396 & 19.1 & 1 & - & : \\
\hline 4me & 82 & 83.7 & 18.0 & 713 & 33.2 & 11.3 & 546 & 11.1 & 14.3 & 31 & 17.4 & 25. & : & \\
\hline coretit & 309 & 31.3 & 13.0 & 128 & 06.1 & 13.7 & 019 & 23.9 & 12 * & tas & 44.9 & :2.: & \(\cdots\) & . \\
\hline Qutamel & 184 & 18.5 & 21.5 & 26: & 11.2 & 15.1 & 993 & 14.0 & \(20 \%\) & 105 & 15.1 & 29. & -34 & \\
\hline E-shat & 208 & 24.2 & 22.0 & 299 & 11.8 & 11. & 100 & 34.2 & 21.2 & 290 & 12.3 & 22 & \(\cdots\) & \\
\hline - & 941 & 29.5 & 13.7 & 110 & 13.1 & 15.6 & 0a) & 21.3 & 22.2 & 343 & 41.3 & 21. & 33: & \\
\hline Ugncot & 072 & 25.2 & 21.5 & 110 & 11.9 & 14 & 893 & 25.3 & 21. & 291 & 130 & 15 ; & & - \\
\hline & 804 & 24. & 24.2 & 164 & 17.2 & 10.1 & cal & 29.2 & 23.7 & 343 & 315 & 241 & & - \\
\hline See sued & 188 & 10.5 & 18.1 & 276 & 13.4 & 59.0 & 250 & 35.7 & 13.1 & 1. & 11. & 136 & & * \\
\hline Seatile & n+3 & 16.8 & 21. & 018 & 11. & 14.0 & 31 & 21.4 & 2: & :** & 23.1 & 28.: & : \(:\) & \\
\hline Sevis ste. maple & 84 & 19.9 & 12.9 & 112 & 17.7! & 17.0 & 095 & 23.3 & 22. & 398 & 30.4 & 213 & & \\
\hline st. Cloet & 093 & 18.9 & 81.9 & 095 & 17.1 & 16.0 & 103 & 25.2 & 11.3 & 103 & 19.1 & \(22:\) & & - \\
\hline Toccen & 081 & 26.7 & 10.1 & 349 & 05:1 & 14. & 085 & 14 & 10. & 008 & 27. & 22. & & : \\
\hline metitmetem & 604 & 34.5 & 14.1 & 192 & 19.5 & 15.5 & 048 & \(21 \%\) & 223 & 2ns & 44.1 & 14: & & \\
\hline antrenere & 50 & 08.7 & 19, & 29 & 18, & 19.1 & 046 & 11. & 19. & ct: & 11.3 & 23: & \(\cdots\) & \\
\hline
\end{tabular}

1
are measure of the -Eliebility of the mean as a predic-
tion. The mean data in Table \(I\) are more representative nf
the winds on any particular day where the ratio of \(V / S\) has
a low value. For example, the mean data for washington in
winter (089 degrees, 45 knots) has a V/S value of . 55
whereas the surner mean data (112 degrees, 10 knots) has a
V/S value of 1.57. Therefore, the mean winter data for
Washington are more representative of the winds on any one
day during the winter than the mean sumer data are repre-
sentative of the winds on any one summer day. Fur her, at
Ft. Worth in summer when \(V / S\) equais 3.56 the mean summer
data (282 degrees, 4 knots) would not be a very reliable
prediction for the winds on any one summer day."

\section*{I. DOSES AND DOSE RATES IN OVERLAPPING FALLOUT PATTERNS}

Since no attempt has been made to estimate the possible level of attack on military targets, or the distribution of such an attack throughout the United States, it is not possible to give an exemple of the integrated fallout pattern throughout this country for even one set of wind conditions. What will be considered instead is an estimate of the maximum level of fallout which might reasonably be anticipated in and around a reasonably large populated area subjected tc a direct attack. Specifically, it will be assumed that 3 10-MT, 50 percent fission yield weapons have been surfaceburst in such a way that the 5 psi circles are just tangent to each other. The wind speed selected \(i=10\) knots -- the average for the Washington, D.C. area in the summer (see Table 11). The model used will be the WSEG-NAS model, the effective wind shear \(0.1 \mathrm{kt} / 1000\)-foot altitude. One wisines to examine how the \(\mathrm{H}+\mathrm{i}\)-hour contour levels, and the first week dose (maximum biological dose) contour levels can overlap under these conditions. The individual patterns, with overlap indicated, are plotted in Figures 22 and 23.

It may be seen from. Figure 22 that most of the area covered by the 5 pil blast level has a contamination level of at least \(1500 \mathrm{r} / \mathrm{hr}\) at l hr . About half the total 5 psi area and somewhat more of the downind area outside the 5 psi circles are
contaminated to a level of at least \(5000 \mathrm{r} / \mathrm{hr}\) at 1 hr . Significant areas within the 5 psi blast level and dow ind of it are contaminated to levels in the rance of 5000 to 10,000 r/hr at 1 hr . The highest levels indicated by the patterns are about \(13,000 \mathrm{r} / \mathrm{hr}\) at 1 hr . Very extensive areas downwind are overlapped by all 3 patterns, for a total contamination level of at least \(4500 \mathrm{r} / \mathrm{hr}\) at 1 hr .

From Figure 23, it is seen that a maximum biclogical dose (approximately equal to the total dose during the first week) through most of the 5 fsi area is at least 5000 r , that it is about \(15,000 \mathrm{r}\) over significant positions of the blast area and beyond, and that it reaches about \(26,000 \mathrm{r}\) is the ares of greatest intensity:

These results are for a fission yield of 50 percent. They should be increased by \(1 / 3\) if the fission yield is increased from \(1 / 2\) to 2/3. They would increase if the effective wind were less than 10 knots, or if there were heavy fallout from other targets. They would decrease if the effective wind were greater than 10 knois, or if the ilssion yield were less than 50 percent. They would disappear altogether if the weapons were airburst.

One cannot drax reliable general conclusions as to the level of rallout contamination against which protection should be sought in and around all urban areas by a single illustrative example uaing one of several fallout models, ind considering only an area subject to heavy attack. For fallouts as with blast and heat, each area requires special study, and each rea must be considered in light of many postulated attacks on the country as whole. Thedata and methods described in this paper show one way of making such a study, provided additionai assumptions are made as to the weight and distribution of attacks on military targets.

There 1s, perhaps, one sentative conclusion of some 1mportance which folluws from the insesoun mowal. Namely, that In areas in and around a Earget sutjectel to multiple attack with high-yield sirraceburst weapons, \(=5 \mathrm{rtanination} \mathrm{levels} \mathrm{in}\) the range of 5000 to \(10,202 \mathrm{r} / \mathrm{hr}\) at 1 rr , and first-weeis doses in the range of \(15,050 \mathrm{r}\) to \(30,000 \mathrm{r}\) are not unreasonabie fallout levels to consider -- along witi other factors such as cost -- In the design of shelters and in planning recovery operations.

Appendiz A

\section*{DISIRBUIIION OF LAND AREA BY DENSITY OF POPULATION}

Table 1. POPULATION, LAND AREAS, AND DENSITIES OF U.S. URBANIZED AREAS (19EJ 「ENSUS)
(213 Urbanlzed Areas, See Table 5 for Pank According to Population)

Table 1. (Continued)

Toble 1. (Continued)

Table 1. (Continued)

rable 1. (Continued)

Table 1. (Continued.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Hatas f TEA *} & \multirow[b]{2}{*}{00.871 43 (50 oroctan)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { EAEO } \\
& \left(x^{2}\right)
\end{aligned}
\]} & \multirow[t]{2}{*}{atcolti (0.070001/ -1)} & \multicolumn{11}{|c|}{} \\
\hline & & & & 1680 & \(\left[\begin{array}{l}1080 \\ 1809\end{array}\right.\) & 1003- & 2500
1000 & 1809-1 & (0299- & \(7200-\)
0000 & (1.600. & \(\left[\begin{array}{l}13.009 \\ 13.000\end{array}\right.\) & 13.200. & 12.003
00.300 \\
\hline & & 69.7 & 2.053 & & & bs. 3 & & & 88.4 & & & & & \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & 111.ch7 & 28.4 & 1.403 & & & & & & & & & & & \\
\hline & *).118 & 84.8 & 23.943 & & & & & 20. & & & & & & \\
\hline luan carife 10 Trisi - 10 og & 83.898 & 16.2 & 3.0859 & & & & & & & & & & & \\
\hline & 03.043 & 51.2 & 3.214 & & 12.0 & & & & & & 1.8 & & & \\
\hline & 81.8088 & 81.8 & 8.884 & & & & 1 & & & & & & & \\
\hline chestax mot & 184.35 & 47.2 & 3.393 & & & & 10.0 & & 71.2 & & & & & \\
\hline & 10y.8.89] & 81.8 & 3.603 & & & & & & & & & & & \\
\hline Lexter that & 60.878 & 13.8 & C.608 & & & & & & 13.5 & & & & & \\
\hline & 0.4 & 18.8 & 0.005 & & & & & & & & & & & \\
\hline & 93,081 & 24.1 & 2,0as & & & & 34.4 & & & & & & & \\
\hline Iss oravin matmo & 64.0098 & 36.7 & 2.50 .09 & & & & & & & & & & & \\
\hline \begin{tabular}{l}
tampryspersal \\

\end{tabular} & 14.183 & 74.5 & 2.354 & & 31. & 1 & & & & & 7.8 & & & \\
\hline & & 39.2
7.2
38.8
31.3 & (.998 & & & & & & & & 1.8 & & & \\
\hline & 31.04? & 13.2 & 4.6.3) & 3.2 & & & & & & & & & & \\
\hline & 41.487 & 18.8 & 3.181 & & & & & & & & & & & \\
\hline & 65.738 & \% \({ }^{\text {\% }}\). & 40 & 48.3 & & & & & & & & & & \\
\hline & & 83.5
4.0
4.0 & & & & & & & & & & & & \\
\hline Comatrateney & 111.040 & 37.2 & 1.118 & & & & 仡 & & & & & & & \\
\hline T* Jrimu Primg & **). 818 & 13.8 & \[
\begin{aligned}
& 1.812 \\
& 1.48
\end{aligned}
\] & & & & & & & & & & & \\
\hline & 58.035 & 13.1 & c.tss & & & & 4.t & & 0.3 & & & & & \\
\hline & 81.839 & 8.3 & 1.949
8.485 & & & & *. & & & & & & & \\
\hline Lforeten matis & & 83.8 & 1.092 & 9.6 & & & & & & & & & & \\
\hline liecsitu & 123.888 & 59.4 & S.0090 & & & & & & & & & & & \\
\hline THM & 183.017 & & 2.975 & - & \[
10 .
\] & I9 & & \[
1
\] & & & & & & \\
\hline fo tezurat cteray & 109.0 & & 1,241 & & & & & & & & & & & \\
\hline LTETA mas ese cis cianto & 107.618
¢8.72 & \%9.8 & 3.818 & & & & & & & & & & & \\
\hline & 19, 178 & 19.8
14.8 & 2.780 & & & & & & & & & & & \\
\hline & & 01.4 & 1.753 & 48.1 & & & & & & & & & + & \\
\hline In coaltal tivias & 112.718 & 28.3 & 3.860 & & & & & & & & & & + & \\
\hline & & 19.8
14.3 & 3.78 & & & & & & & & & & I & \\
\hline & & \[
\mid
\] & -.704 & & & & & \[
1280
\] & . 1 & & & & & \\
\hline \begin{tabular}{l}
10 Cateral cistos \\
Les matig 3 \\
 \\

\end{tabular} & (tay.183 & & 4.818
3.88
3.693
\(4.21 \%\) & & & & & & & & (& & , & \\
\hline & * & 135.6 & 4.474 & & , & & & & & & & & , & \\
\hline \begin{tabular}{l}
Loviswitit \\
10 Bratal formpo
\end{tabular} & \$10.0.40 & \[
\begin{aligned}
& 8=1 \\
& 70.8
\end{aligned}
\] & \[
\begin{aligned}
& 8,481 \\
& 2,188
\end{aligned}
\] & & \[
1
\] & & & & & & & & 1 & \\
\hline (mathantiven & 119,00\% & 90.0 & 3.089 & & & & & & & & & & 1 & \\
\hline \begin{tabular}{l}
Luman 11 \\

\end{tabular} & \%8.907 & IS.1 & \[
\begin{aligned}
& \text { OR1 } \\
& \text { int } \\
& \hline
\end{aligned}
\] & & & & & & & & & & 1 & \\
\hline
\end{tabular}

Table 1. (Continued)

Table 1. (Continued)

Tabla 1. (Contrined)

Table 1. (Continued)

Table 1. (Continued)

Table 1. (Consinued)

Tablo 2. POPULASTOR LAND AREAS, AND DENSITY OR U.S. URBAMIEDD AREMS (1960 CENSUS)

Table 2. (Contmued)

2a de 2. (Consinued)

Tesle 2. (Continuca)

\section*{ATVNOMO}
\[
\begin{aligned}
& \text { FEwnemy 18, 193 }
\end{aligned}
\]

> Excerpt from Statement of Secretary of Desense Robert S. McNamara before the House ArmėServices Ccmmittee ca the Piscal Year 19太末-70 Defense Program and 1966 Defence Budget. February 18,1965 .

\section*{CAEGBILITIES OP THE PROGRAMED FORCES FOR DAMAGE LIMI-STIGN}

The ultimate teterrent to a deliberate nuclear attack on tho Unetcd Siates and its Allies is our clear and un-istakable ab1lity to destroy an agerressor as a viable society, even after oum Jorces have been attacked. But if deterrence fazis, whether Dy accicent or miscalculation, it is essential that Erces be cvasiable to limit the damage of such an ettack to ourselves and ขะ3 Alwes.

The utility of the Strategic Offensive Forces 1r. the Damage Limiting role is critically dependent on the timing ef the enemy attacis or. J.S. urban targets. For example, if an ena-.y missile attsck on U.S. cities were to be sufficiently delayed after an attacts on U.S. military targets (an unlikely contingenay) our strotegic missiles (mhich can reach their targets in =ess than one hour) could signifi=antly reciae the weight of trat attack by dastroying, prior to launch, a large part of the eremy's forces mitheld for use azeinst our cities.

IP the urban attack were delayed 42111 longer, ci= bomber Pores coula also contribute to the Damage Limiting ob:ective. Honever, if the enemy were to launch his attack against our umben areas at the beginming of a general nuclear var, our Strategle offensive Porces -- both missiles and bombers wonld heve a Erearly reduced value in the Damace Limiting role. Tasir contribution in that case would be linited to t:e degetuction of eneny residual forces -- unlaunched stretegic misclles and bombers, re-fire missiles, and any other strategic Porces the enemy might withhold for subsequent strikes.

Since we have no fay of knowing hou the enemy woidd execute. a nuelear attack upon the United States, we must alsc intenIvaly explore alternative "defensive" syistems as mears of limiting danage to ourselves. The problem here is to nchieve an optimu calance amons all the elements of the generil nuclear var forses, particuiarly in their Damase Limiting roie. This 18 what we mean by "balanced" defense.

Although a dellberate nuclear attack upon the United States nisy seem a highiy unlikely. contingency in view of our anmistakmio Assured Destruction capability, it must resefve jur urgent thtontson because of the cnormous congequences 18 wouit have. mentis rogerd, I should mate two potnts ciear. First, in order
to preciude any possibility of miscalculation by others, I want to reiterate that although the U.S. would itself suffer severely In the event of a general nuclear war, we are fuily comitted to the defense of our Allies. Second, we do not vieu Damase inatztion as a question of concern oniy to the U.S. Jur ofcensive forces cover strategic enem; capabilities to infilict darase on our Allles in Europe just as they cover enemy threats to the continental U.S.

To appreciate fully the implicatlons of an attack on cur cities, it is useful to examine the Assured Destruction obsective from the attacher's point of view, since ouy Danage Limitirs problem 13, in effect, his Assured Destruction problem.

Several points are evident From mor necymie os this problem. First, it is clear that with limited rallout protection, an enemy attack on our urban areas would cause Ereat loss of life, shiefly because of the heavy concentration of popilation in our large citles, which I noted earlier. Second, the analysis cleariy demonatrates the distinct utility of a nationouide fallout sheiter program in reducing fatalities, at all levels of attack. mird, the analysis shows that the attack would destroy a large percentage or our industrial capacity. Each successive doubling cf the number of delivered warheads would increase the destruction of oum population amd incuatrial capectiy by proportionate:z smaller amounts since smaller and smaller cities would have to be atrached.

In order to assess the potentials of various Damage Limiting programs we have examined a number of "balanced" derense postures at different budget levels. These postures are designed to defene against the assumed threat in the early 1970s. To 111ustrate the cricical nature of the timing of the attack, we used two li-1ting cases. First, we assumed that the enemy would inftiate nuclear mer with a simultaneous attack against ous cities and military targets. Second, we assumed that the attack asainst our citles would be delayed long enough for us to metaidate againgt the aggressor"s military targets with our missiles. In boti cases, as estmated since our main purpose here was to sain an insight into the overall problem of limiting damage. The results of this analysis are sumatrized in the table below.

Estimeted Effect on II.S. Patalities of Additions to the Approved Damage 1 mit 1 ng Program (Based on 1970 population \(c: 210 \mathrm{milli} o n)\)

Additiona?
Investigent
- 0 bililion

5 billion
15 b11110n
25 biliion

Millions of U.S. atalities Early Urban Attack Delay-d Urban Attaci 149 96 78 41 hillion woule aome from non-Pederal sources) would provide a full fallont sheiter program for the entire population. The \(\$ 15\) billion jevel would add aboui \(\$ 8-1 / 2\) billion for a limited deployaent is a low cost configuration of a rissile defense aystem, Fiis about \(\$ 1-1 / 2\) billion for new menned bumber defenses. The \(\$ 25\) bijilion level mould provide an additional \(\$ 8-1 / 2\) billion for anti-=1ssile defenses (for a total of about \(\$ 17\) billion) and another \(\$ 2-i / 2\) biliion for 1 mproved manned bomber defenses (for a total of \(\$ 3\) biliion).

The number of strategic missiies required to take full afvantage of the possibility that the astressor might delay his attack on our caties is already included in the foress proeramed through 1970.

The high utility of a fill nation-wide fallout shelter program in the Danage Limiting role is apparent from the foregoing table -- it would reduce fataiities by about 30 msllion compared with the present level of fallout protection. The following table she:s that a transfer of resources from fallout shelters to other defensive systems would result in substantially less effective defense postures for any giver bujget level.

Eisimated. Effect of Fallout D:otection on U.S. Fatality Levels ior Several Da-3ane initing Programs (Based on 1970 total population of 210 million)

Millions of U.S. Fatalities

Adaltional
Investment
\$ 0 bil11on
5 billion
15 bilison
25 billion

Early Orban Aitacis Partial Protection 149 145 121 107
\begin{tabular}{c}
Protection \\
\hline 149 \\
120 \\
96 \\
78
\end{tabular} 78

Delayed Urion Atta Partial Protection Protect1: 122 122 107 19 59 90 59 41

The figures indicate that in the case of an early attack on jur urvan centers, for the same level of survivors, any Damage Imiting program which excludes a complete fallout shelter system would cost at least twice as much as a program which in:Iudes such a system -- even under the favorable assumption that the enemy would not exploit our lack of fallout protection by lurface bursting his weapons upwind of the fallout areas. In udition, fallout shelters should have the highest priority of uny defensive system because they decrease the vulnerability of the population to nuclear contanination under all types of ittack. Since at the \(\$ 15\) and \(\$ 25\) billion budget levels, the lulk of the additional funds would go to missile defense, a ligh confidence in the potential effectiveness of the system lould have to be assured before commtment to such large :xpenditures sould be justifled. Furthermore, at these budget ievels. missile defenses would also have th be interlocked with ilther local or area bomber defenses in order to avoid having ne type of threat undercut a cefense against the other.

Although missiles clearly have a better chance than bombers if destroyine residual enemy offensive forces because they can -ach them much sooner, we also examined the effectiveness of ombers in the Damage Limiting role. In one such analysis we :ompared a otrategic adrcrast - the ARSA - and two strategic HSsiles - RTWUTEMAN II and an improved mssile for the 1970s. This improved miscile could be developed and deployed within ine same time frame as the AhSA). Although share are many ncertainties with regard to both the assumptions and the planning actors used in this comparison. it did demonstrate clearly oue mportent point, namely, that there are less costly ways of lestroyine residual enemy missiles and alrcrafi than by developo ng and deploying a net AlSA -- even ignoring the fact that ememy ussile silos and bomber fields are far more likely to be empty y the time the bombers pass over than when the missiles arrive.

There is also the possibility in the 1970s of a smail luclear attack on the United States by a nation pessessing only 1 primitive nuclear force. Accordingly, we have undertaken a umber of studies in this area. Our prelimsary conclusion is hat a main, balanced defense procran could, indeed. sisnif1mily reduce fratalicies from such an attack. Rowever, the cad time for additional nations to develop and deploy an fective balligulc missile ayarem capable of reaching the nited Stares is greater than we require to degloy the defense.

In aumary, several tentative conclusions may be dramn from ur ceamination of the Damage Limiting problem:
(1) With no nei U.S. defenses against nuclear attack in the early 1970s, the strategic offensive forces likely to confront us could inflict a yery high level of fatalities on the United States.
(2) A nation-wide civil defense program costing about \(\$ 5\) billion could reduce fatalities by about 30酐llion.
(3) IP active defense systems operate as estimated, - leser, balanced Damage Limiting program for an ectiticnal \$20 billion could reduce fatalities associsted with an early urban attack by another 40 million.
(4) There is no defense program within this general range or expenditures which would reduce fatalities to a level much below 80 million unless the enemy delased his attack on our cities long enough for our missile forces to play a major Damage Limiting role.

Horeover, we have thus far not taken into account a factor which I touched on at the beginning o: this discussion, and that is possible reactions of potential assressors which could sarve to oifset our Danage Limiting initiatives. Let me illustrate this point with the following example. Suppose we had alrasdy spent an additional \(\$ 15\) b11110n for a balanced, Damage Lindtine posture of the type I described earlier, expecting that it would limit fatalities to, say, 95 milifon in the event of a first strike against our cities. We then decide to spend another \(\$ 10\) billion to reduce the fatalities to about 75 milil . If the ensmy chooses to offset this increase in survivors, he ohould be able in the 9970 s to do so by spending about \(\$ 6\) billion core on his offensive forces, or 60 percent of our cost.

At each successively higher level of U.S. expenditures, the ratio of our costs for Damage Limitation to the potential agsreasor's costs for Assured Destruction becomes less and less favorable for us. Indeed, at the level of spending required to limit patalities to about 40 million in a large first strike egainst olir cities, fe would have to spend on Damase Limitine promerss about lour times what the potential ageressor would have to spend on damase creating iorces, 1.e., ths Assured Dastruction forces.

This argunent is not conclusi:e 3 gainst our undertaking a major new Damage Limiting program. The rescurces available to The Soviets are more \(11 m 1 t e d\) than our own and they may net actuaily react to our indtiatives as ye have assumed. But it does underscore
le fact that beyond a ceriain levei of defense, the cost lvantage lies inoreasinsï, with the ofrerse, ara this fact ist be taken into accourt \(i n\) anj \(d \in=2=1=n\) to \(=0\) mit ourseives

Appordix C

CIINICAL FEATURE OF RADLATION INJUY

\section*{CUNICAR FEATURES OF RADIATION ININKY}

\section*{A. CETERAS}

All that is knom about the quantitative imadaste effects of varioms rediations on nowal humans comes from malysis of -xpethence with radiation therapy (sick humans), Pron miviles of accidental exposure, frow the study of the japanese who aurvived the atomic bombing, and from controlled experiments with animis. Even though much of the informetion 13 Indirect, wore is known about radietion than about any other agent cajable of cunsing masy cesuaitics. In an emergency cue to radioactive sallout, the casualty rate for tay group of people can be predicted wish considerable comidence, on thu basis either of rediologlcal exposure cata or of medical evalwation of a representative sample of the group. \({ }^{2}\) A susten of predictic: consists of a classificaticn of the varictics of rediation induries, the clinical manitemtations and procrosis or each

Ifational Compttee on Radiation Protection and Measurements Report Ho. 29, Exposure to Radiation in an Emarmenction Junuary 1962, p. 59 et seq.
\({ }^{2}\) The Derense Atomic Support Agency made the followina commert on this. sentence during revien of thas peper:

Whe mitatumet that in an emergency the casualiy Fate can be predscted with considerable confidence can be rather misleadng. Enough is known, is a certain dose is given, to predice what would happen to an individual. However, in an emergency situation, the domages or conditions of erposure w111 not be well enough knoum. Even 20 5ears after the Japanese eaplosions thesa are not well known. A nedscel coaluation will not completely seperate the sroups because there is too much overlapping between the sroupa.
variety, and the dose, or range of dose, or canditions of exposure, responsible for each variety.

\section*{3. CLASSIEICATION OF RADIAMIO: IANUCY}

Aaypecsetic, or inapperent, or undetectabie radiation injury occurs when the brief exposure dose, or the ERD, or the dose of internal (\(\dot{E}-\gamma\)) radiation is less than 50 . The effects of a single, brief dose between about 15 and 50 r can be detected when statistical methods are appiled to blood-count data from a sufficiently large group of reople. Presumably, the same is true for the eifects of en ERD less than about 50 r. Except for the statistical chanse in blood count, no cne will bo aware of exposure in this range.

Acute radiation sickness \({ }^{1}\) (also called the "acute radiation syndrowe." "whole-body radiation injury," etc.) is caused by Czesmal or internal \(y\) or \(X\) radiation. Clinical manifestations melude genspal "qozic" symptoms, \({ }^{2}\) such as wealness, nausea, easy fatigue, etc., and specific sjuptoms and signs caused by damage to the gastrolntestinal tract, the blood-formirg orgaris, the centrel nervous systea, etc. The signs of radiation sickness includs alterations of the blood count, excretion of abnormal substances in the urine, loss of hair (epilation), a tendency to bleed easily, etc. Radiation sickness may consis= of nothinf more than decrease in the white cell count and slight fatigue, or it may be so severe that death occurs witrin hours of the onset of exposure. Five clinical groups can be distinguished on the basis of severis which can be correlated with the size of the cose.

Radiation sfckness is described as acute when cilnical menifestations occur early and do not last longer than 6 months. \({ }^{2}\) Sympoms are what the patient complains about, e.g., headache, weakness, etc. Signs or radiation injury are observed by an exaniner, e.t., hemorrhase, loss of hair, etc., or detected \(\mathrm{E}_{3}\) a ladoratosg test, e.g., low mhite soll count, etc.

Qroup I: Less than half this group vomit mithis 24 hours after the onset of exposure. There are elther no mubsequent symptoms or, at most, weakness ans easy fatigue. shore is a decrease in the white blood cell cowae (inich 18 most marice in the case of the lymphocytes) and in the pletelet count. Less than 5 percent (1 cut of 20) require madical care. All otherm can perform sinesr cumtomary tasics. Aus ceaths that occur ase caused by complicationa. Sickness of thas type has been scen arter brief. wholemody doaes of \(r\) end \(x\) radiation in the range of 50 to 200 r. An EnD of cutcmal \(\gamma\) madation of 50 to 200 r cay have a diailar efrect.

Qroup.II: More than hals this eroup womit soon arter the onset oi exposure ane are sish for fow dms. This Is folloned by period of 1 to 3 wectu when thets ave fed or no aymptoms. Dusinit the letont period, typleal changes occur in the blood comt and ren be used row diamosis. At the ens of the latent poriod, cpllation (loas os halz") is sem in morw than halp, and this is folloned by a moderately sevare 111ness duc primasily to the camage to the bloodm formang omeans. Nost of the people in this eroup require cealcal care. More thar half will aurvive, with the chances of aurvival being bettez jog those nho receltad the smalier

 probebiy caum a cimilai \(113 n c o s\).

Qxowit III: This in amorexione version or the sicknoss desuriced as Group II. The inttish period of illness 13 lonser, the latent perina is shomere and the win
 riamen ant complicating inicctlons. People in thia eroup peed rimeal care and hormitallacien. Lems than hais wall survive, with the chances of survivis belng poontst for those wio recoived the largest coser. Slcknse or thss type has Deen seen atter belef wholemody y ratiasion with doses in ozcess. of 450 z . It \(1 \mathrm{~s}^{3}\) possible that an gis or eztercal

 mons described as croup III. All in than croup begin to venit soon after the onset of erponure, und chis contzmues Lor soveral days or unt 12 coatt. Demuma to the paserom incostinal tract predozantcs. mandrased by intrmeteble Maxmea, whach soon becomes bloody. Chengres in the blood coust occur early, and uithin a rem divs the total white cell count may be less than 500 per win. Death occurs
Tojum cited axe for briet vholeobogy erposure to 250 krg z PMys.
- before the end of the second week, and usually before the
- appearance of hemorthazes or epilation. All in this group need care, and \(1 t\) is unlikely that many will survive. Sickness of this type has been seen after brief, wholebody exposure to r radiation in excess of 600 r . During protracted exposure to external r ridiation, it is not probsbla that an illness of this type would be the first evicance of injury.

Group V : This is an extremely severe illness in which damag to the brain and nervous system predominates. Sympors, signs, and repid prostration come on almost as soon as thy cose has been received. Death oscurs within a fous houss or a fer days. Sickness of this type has been seen after \& briep whole-body exposure to rays in excess of severel thousand \(r\) and to equivalent doses from neutrons.
Chrons radiation sictmess. \({ }^{1}\). There is almost no information about the effects of protracted external exposure of man. Some redsur chomists and rediolegists who worted with radiation before the hazards were recoenized frequently developed a progressive rafroctary ancmia and died either from the anemis or from conblicosizs infections. Animal experiments provide litile adetinnal information concernint the patterns of chronte redidtica sickness that may occur in man. At preaent, we cannot tell the size of the EnD that will be lethal, when exposure is protracted over a period of years.

\footnotetext{
Fine sicknsan is doseribet as chrongs when the symptoms and sien parsist bezond e monthb.
}

\section*{caronswivande conves}

\section*{nctan mutamed cos}

\section*{}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
{ }^{8} \text { neter }
\] & & \[
\frac{3}{n+3 n}
\] & consmb & \[
{ }_{5}^{5}
\] & & \begin{tabular}{l}
\[
1
\] \\
42 xmze
\end{tabular} & \\
\hline (6ituratuman) & Hextm & -xizun & chmama & cissmus & cild & dias & natymu \\
\hline & Rexaterem & vecterit & 20 man & cuturem & & 2025093 & 67\% \\
\hline 1.8 & -23.33 & 15.48 & 54. 51 & 34.58 & 1409.33 & 2480.30 & . 60 \\
\hline 3.68 & -14.68 & \(18.64{ }^{\circ}\) & 32.02 & 22.62 & 8697.72 & 1508.83 & . 09 \\
\hline 10.60 & -11.69 & 13.57 & 39.42 & 39.42 & 1100.30 & 120.2.45 & . 00 \\
\hline 39,68 & -12.72 & 12.59 & 23.20 & 29.26 & 1831.49 & 1123.90 & . 03 \\
\hline 123.03 & -11.56 & 11.52 & 25.63 & 25,09 & 221.6s & 931.64 & . 60 \\
\hline \(1{ }^{3} 8.3\) & -10.40 & 10.29 & 23.69 & 23.63 & 744.30 & 750.38 & . 00 \\
\hline 1030.00 & -8.94 & 0.63 & 19.83 & 19.05 & 52\%.19 & 538.48 & . 03 \\
\hline 320.0.89 & -7.37 & 7.27 & 14.37. & 16.37 & 374.69 & 376.83 & .c0 \\
\hline 14.33 .63 & -5. 11 & 3.03 & 11.38 & 11.38 & 168.008 & 281.53 & .00 \\
\hline 3524.8 & .70 & . 40 & 1.56 & 1.98 & 2.55 & 2.70 & . 60 \\
\hline vewtid mex & 32034.58 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\frac{1}{1}+5
\] & \[
{ }^{2}
\] & \[
\stackrel{3}{x+2 m a s}
\] & \begin{tabular}{l}
\[
4
\] \\
c 2 m
\end{tabular} & maseen & \[
\operatorname{sects}
\] & \[
\begin{gathered}
7 \\
\cos 2 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
3 \\

\end{tabular} \\
\hline (extaremy & Cumb & tack & WuTMmes & cossuma & - & A-a & Lutames \\
\hline & Primets & DExTsim & 45038 & Havzuxer & & 435xe & \\
\hline 1.303 & -15.53 & 15.07 & 63.20 & 60.90 & 2862.03 & 2023.09 & .00 \\
\hline 3.48 & -14.23 & 14.11 & 37.35 & 57.28 & 2504.79 & 2938.63 & . 03 \\
\hline 20.00 & -13.17 & \(13.0 \%\) & 33.21 & 53.21 & 2187.39 & \(2101 . \mathrm{Ca}\) & . 80 \\
\hline 39.63 & -12.20 & 12.05 & 49.12 & 49.12 & 1060.97 & 1839.01 & . CO \\
\hline 102.0 & -20.94 & 10.90 & 44.20 & 44.29 & 1580. 89 & 1319.49 & . 0 \\
\hline 200.03 & -9.50 & 9.36 & 379.19 & 37.18 & 1103.91 & 1209. \({ }^{\text {a }}\) & . 03 \\
\hline 102.0 & - 2.12 & 8.10 & 32.81 & 32.01 & 2020.42 & B48. 20 & . 00 \\
\hline \%29.09 & -3. 35 & 6.28 & 23.85 & 23.65 & 585.62 & 5\%6.07 & .c5 \\
\hline 120020.48 & -3.69 & 3.39 & 14.10 & 24.10 & 130.63 & 153.32 & . 03 \\
\hline Exancis but & 15432.63 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\stackrel{1}{\operatorname{men}^{2} \operatorname{sum}}
\]} & 2 & 3 & - & 5 & 6 & 7 & - \\
\hline & & Mrisent & cosmerm & ceridas & 4CESA & cretenms & antric 50 \\
\hline & 59 & DCsinsis & 40153535 & coosswes & Ane & cesa & kexment \\
\hline & Foscilas & & 4t cissim & Cosprisini & & Eurs & W80\% \\
\hline 1.06 & -14.93 & 14.50 & 114.43 & 144.43 & 3803.31 & 5281.58 & . 00 \\
\hline 3.60 & -13.64 & 13.52 & 107.22 & \(107.3{ }^{3}\) & 4585.78 & 6876.est & .00 \\
\hline 12. 6 & -12.57 & 12.65 & 99.3* & 92.0.4 & 3373, 83 & 3*34.00 & . 09 \\
\hline 29.00 & -31.50 & 11.47 & 90.45 & 99.45 & 3223.92 & 2344.23 & . 0 \\
\hline 109.08 & -10.2t & 10.09 & *). 27 & 42.27 & 2533.15 & 2399. 38 & . 03 \\
\hline 383.09 & -6.6s & 3.76 & 69.83 & 49.68 & 1919.01 & & . 08 \\
\hline & -8.80 & 6.97 & 55.08 & \$5.83 & 1239.67 & 1234.47 & . 00 \\
\hline 200103 & -4.s\% & 4.91 & 39.12 & 39.12 & \(0 \times 1.16\) & 657. \(0^{88}\) & .09 \\
\hline Hatho mis 4, & 0636. 65 & & & & & & \\
\hline
\end{tabular}

\section*{ \\ }
1.000 GHOHAD

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & 2 & 3 & 4 & 3 & \multirow[t]{4}{*}{cruas LRE} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
8 \\
0asue 70 \\
 viers
\end{tabular}} \\
\hline & Hamina & ciextu & \(\operatorname{cossm} 20\) & Hexmem & & & \\
\hline & U4id & Cutariv & nembutumit & cmasumb & & & \\
\hline & Tuncxux & crusus & 0 cmin & Whaxymu & & & \\
\hline 1.00 & -5.53 & 471.25 & 8.8 & 33.68 & 31174.91 & 42178.57 & 305.35 \\
\hline 3.09 & -9.13 & 295.98 & 6.31 & 42.67 & 29071.89 & 26730.35 & 255.60 \\
\hline 10.00 & 4.65 & 316.97 & 7.63 & 31.69 & 15301.58 & 10007.62 & 195.64 \\
\hline 39.00 & -4.1 1 & 24.9 .91 & 7.00 & 23.35 & 2089.31 & 9208.93 & 155.25 \\
\hline 100.00 & -3.60 & 180.11 & 6.30 & 15.03 & 4556.38 & 4582.22 & 100.25 \\
\hline 100.00 & -3.08 & 124.15 & \$.37 & 10.40 & 2247.61 & 2129.11 & 63.00 \\
\hline 1000.00 & -2.22 & 71.77 & 4.20 & 6.E* & 026.18 & 799.16 & 23.25 \\
\hline 3000.00 & -1.29 & 32.18 & 2.93 & 4.17 & 237.32 & 220.77 & 8.09 \\
\hline 10800.00 & . 65 & 6.72 & .00 & 1.54 & 13.59 & 17.77 & 3.00 \\
\hline varname nout & 1174.37 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & - \\
\hline Hes 3 Mas & 503meta & HTy & & \(x \operatorname{tanmax}\) & Mridet & 2perinsurx & Prumit to \\
\hline & \%max & Prenumu & WRAETETS & cossmox & \(\sin\) & Azes & \\
\hline & - mentis & gements & & Exvervir & & 4 4 & LTmpt \\
\hline 1.39 & -5.32 & 423.77 & 9.19 & 92.03 & 34233.74 & 92035.4.4 & 221.23 \\
\hline 4.60 & -5.81 & 350.04 & 0.62 & :1.30 & 36272.65 & 3820.81 & 226.40 \\
\hline 10.03 & -4.44 & \(27 \%\) & 7.93 & 92.53 & 20701.67 & 22546.95 & 148.29 \\
\hline 30.00 & -4.10 & 209.46 & 7.04 & 16.58 & 14415.3 \({ }^{\text {团 }}\) & 12271.2\% & 111.23 \\
\hline 104900000 & -3.35 & 145.74 & 6.41 & 23.49 & \$202.62 & sems. 97 & 09.25 \\
\hline - 300.00 & -2.5 & 90.92 & 3.3i & 4.65 & 2203.9\% & 227017 & 35.25 \\
\hline 1000.00 & -2.84 & 52.72 & 4.60 & 6. 18 & 720.70 & -05. 12 & 29.25 \\
\hline 3240.40 & -1.26 & 2-.03 & 3.91 & \(\therefore .49\) & 181.67 & 178.649 & 6.04s \\
\hline ET040.43 & . 0 & 3.12 & - 4 & 1.33 & 7.97 & 18.33 & 3.64 \\
\hline & 脑\$.95 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & 2 & 3 & 4 & 5 & \multirow[t]{4}{*}{actuas AREA} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
- \\
Raver 70 Eampers MIETAS
\end{tabular}} \\
\hline & maxcmis & Materm & cuasmum & maxtuan & & & \\
\hline & 4 4 512 & cecemer & cosmexa & crossup & & & \\
\hline & N0xisucot & OtSTALCE & & Hixwtora & & & \\
\hline 1.00 & -5.67 & 377.22 & 10.38 & 130.043 & 04*40.26 & -4892.58 & 289.25 \\
\hline 3.08 & -5.08 & 100.06 & -.70 & 210.43 & 23039.67 & 3706308 & 103.00 \\
\hline 19.00 & -4.39 & 232.95 & 6.98 & E2.91 & 20135.4 a & 28935.39 & 163.00 \\
\hline 30.00 & -4.11 & 172.10 & 9. 83 & \$9.63 & 1430.13 & 15593.47 & 109.23 \\
\hline 100.09 & -3.32 & 113.99 & 7.17 & 14.42 & 9930. 13 & 6353.35 & 71.29 \\
\hline 290303 & -2.91 & 70.61 & 6.17 & 29.26 & 2231.\% & 2313.63 & 41.25 \\
\hline L090.63 & -2.10 & 36.09 & 4.4 & 10.25 & 610.89 & \(4 \mathrm{E4.40}\) & 19.25 \\
\hline 1050.03 & -1. 12 & 15.79 & 3.18 & 3.10 & 13.314 & 135.80 & 3.25 \\
\hline marlici mom RATE & 6853. 93 & & & & & & \\
\hline
\end{tabular}

\section*{carantis mitica contur:
}

\section*{}

\section*{}

\section*{Calchate gethne certons}

Mitwia mazmatiz DOS

\section*{}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 3 & ， 6 & 7 & － \\
\hline cose Pate & 24xTmy & Hexmmer & Cupdrumix & Muncre & 420：3 & esrutames & Maxcie 30 \\
\hline Excciow \(/ 4.4\) & ypuruail & crexertis & & CNOSSAETD & area & Atera & \\
\hline & Hetaty & ESEMALE & 4 ckituld & Hutwitura & & Fincre & H510trit \\
\hline 1.00 & －3．14 & 1509．19 & 6.42 & 36.47 & 20858．34 & 93782．07 & 960.00 \\
\hline 3.00 & －2．31 & 1224．04 & 9.53 & 29.95 & 35358．07 & 57704．55 & 781.00 \\
\hline 10.06 & －2．52 & 030．60 & 5.39 & 21.21 & 1070 \({ }^{\text {at }}\) & 110\％3．35 & \＄75．00 \\
\hline 30.00 & －2．19 & 6 65． 30 & 4.32 & 14，74 & 10370． 3 & 15917．4\％ & 393．00 \\
\hline 100．00） & －1．75 & 447．07 & 4.10 & 9．4．4 & 7170.60 & 6 653．67 & 28．000 \\
\hline 309.00 & －1．35 & 204.92 & 3． 32 & 5.26 & 2760.17 & 2617．79 & 120.00 \\
\hline 1400.00 & －．\({ }^{\text {P }}\) & 105．74 & 2．10 & 3.40 & 633.64 & 602.43 & 24.00 \\
\hline 300C． 00 & ． 16 & 23．63 & ． 04 & 1.76 & 65．04 & 11．66 & 5.25 \\
\hline H29 503E & 3554．24 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Dose Matit & 5 & Matmem & crasinim & & 4CAL & & Ratcr 10 \\
\hline \multirow[t]{2}{*}{} & 以\％M\％ & putherav & 2bxuryrut & cossinio & aria & AREA & Materems \\
\hline & 8ammen & mix \(h^{\text {mamm }}\) & Himextm & & & C3ITES & wTy \\
\hline 1.00 & －2． 10 & 1325．59 & 4．44 & 05.78 & 1260653．4．3 & 137684.10 & 00\％．33 \\
\hline 1．035 & －2．63 & 1953．19 & 9．97 & 49.67 & 74．746．27 & 2354．7．3） & \(6: 3.00\) \\
\hline 10．07 & －2．32 & 777.64 & 5.40 & 12.75 & 37938．67 & 40130.3 s & \\
\hline 30.6 & － 2.19 & 32．03 & 4.83 & 21.34 & 10i53．77 & 18732．6 & 3.1 .25 \\
\hline 100.00 & －1．72 & 164.01 & 4．11 & 12．62 & 695.40 & 6083.77 & 195．00 \\
\hline 318．0．09 & －2．25 & 194．04 & 1.33 & 7.30 & \(\geq 360.72\) & 2202.22 & 95，00 \\
\hline 1000.08 & －． 78 & 63．34 & 2.16 & 3.76 & 337．73 & 490.93 & 29.25 \\
\hline 30000．03 & ． 31 & 22.19 & .00 & 1.75 & 56．03 & 61.80 & 3.25 \\
\hline yevinicser & 3537．040 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline & 践H2MATM & Paxicutix & Cavssurym & Mutimen & ATEA & & H0\％CE 70 \\
\hline WHCW23／4） & themmax & 00343540 & MATHETH2 & cmossinw & Atea & ates & \\
\hline & 809xemet & OTHAMEE & 42 Ontinix & & & & W12T相 \\
\hline 1.48 & －3．14 & 1135．01 & 6．5t & 103．98 & 1789＊1． 38 & 137537.34 & 755.25 \\
\hline 3.08 & －2．83 & 09\％．99 & 6.03 & 7\％．4＊ & 99726.57 & 180222．71 & 538.00 \\
\hline 19.09 & －2．31 & 631.48 & 5．43 & 30.05 & 44272.21 & 10304． 10 & 109．00 \\
\hline 30．00 & －2．18 & 429.78 & 4．\({ }^{\text {ct }}\) & 31.21 & 15931． 03 & 21173.98 & 371.25 \\
\hline 100.00 & －2．761 & 252.07 & 4.28 & 16．93檽 & 6507．47 & 674．73 & 153.25 \\
\hline 300.0 & －1．34 & 136.13 & 3．35 & 6．03 & 1980．74 & 1930．02 & 00.30 \\
\hline 1009．04 & －． 71 & 37.75 & 2.17 & 6.14 & 403.27 & 3tio． 27 & 29.25 \\
\hline 3010． & ． 37 & 13．04 & ．04 & 1.72 & 40．28 & 44．080 & 5.85 \\
\hline ［10 & 4．499 & & & & & & \\
\hline
\end{tabular}

\section*{cascranm wincon axmmas yentait}

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\frac{1}{(2 x)} \cos
\]} & 2 & 1 & 6 & ． 3 & 6 & \(\gamma\) & \multirow[t]{4}{*}{Nate 70 naryans 4ters} \\
\hline & \％\({ }^{\text {aman }}\) & numura & covernix & 4mess & cruas & Exsemem & \\
\hline & cecte & 60xamy & & c 5 css & \multirow[t]{2}{*}{amas} & 4084 & \\
\hline & nexeris & E29\％zes & \(45^{4} 880\) & E4isubict & & & \\
\hline & －29．08 & 29.89 & 68．77 & 03．77 & & 570\％．39 & ． 00 \\
\hline 3.64 & －89．85 & 27．43 & 89.71 & 59．72 & 3840.27 & 8123.60 & ． 00 \\
\hline 19．03 & －23．90 & 25.76 & 23.25 & 蛙． 15 & 4359.67 & 4537．08 & ． 00 \\
\hline 39．09 & －34．32 & 28.23 & 39.7 & 9\％．73 & 3 \％\％ 2.09 & 6022． 1 & ． 00 \\
\hline \％ 8 \％ 09 & －28．64 & 23.82 & 0.0 .4 & 49，64 & 2380．5A & 3489.30 & ． 00 \\
\hline & － 20.58 & 28.67 & 44.09 & 4．．． & 223ss． 18 & 2875.18 & ． 00 \\
\hline 1203．60 & －10． 12 & 12.33 & 79.72 & 39.78 & 2385．33 & 2830.10 & ． 00 \\
\hline 3500.60 & －15．99 & 15.59 & 34.67 & 24．67 & 1727.20 & 178．9．85 & ． 00 \\
\hline 1634．03 & －13．97 & 12.8 & 23.11 & 28.21 & 1137.29 & 1839．39 & ． 00 \\
\hline 2200.09 & －9．39 & 9.3 & 20．38 & 29938 & 589．02 & 523． 25 & ． 00 \\
\hline rumets mess & 109\％0．93 & & & & & & \\
\hline 日85 & \multicolumn{7}{|c|}{} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 8 & 8 \\
\hline \multirow[t]{3}{*}{\[
(\cos 3 \mathrm{ART}
\]} & mm & 2－8\％m & casmma & ximeran & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { acruss } \\
\text { suta }
\end{gathered}
\]} & － & Rames 0 \\
\hline & W\％ & canco & Forame & cossma & & \multirow[t]{2}{*}{\begin{tabular}{l}
48起 \\

\end{tabular}} & \multirow[t]{2}{*}{nicequi
Ex.} \\
\hline & 82smba & cociuciz & cestas & varmy & & & \\
\hline 1，60 & －28． 23 & 23.23 & 820．4 & 102．es & 2817.05 & 9138．20 & ． 00 \\
\hline 3.00 & － 53.8 & 26.72 & 27.57 & 97.57 & 8201.37 & 8811.58 & ． 80 \\
\hline 29.00 & － 23.17 & 25.03 & 92.45 & 92.45 & 7194．87 & 7217．\({ }^{\text {a }}\) & ． 00 \\
\hline \(3 \mathrm{Sa5}\) & － 23.33 & 23.48 & 85，64 & 03.48 & 6297.65 & 3311.69 & ． 00 \\
\hline 40.08 & － 21.98 & 21.45 & 73.42 & 73.62 & 3203.67 & 3201.29 & ． 00 \\
\hline 300.63 & －19．64 & 19.60 & 73.37 & 71.37 & 4367.46 & 4.379 .95 & ． 00 \\
\hline 12080.03 & － 18.27 & 17．24 & 62.73 & 62.75 & 3385.93 & 3390． 5 S & ． 00 \\
\hline 2390.09 & －15．77 & 19．74 & 33．4．83 & 53.82 & 2 s 7 s .45 & \％ 3 （e3． 41 & ． 00 \\
\hline 16059.39 & －11．43 & 21.40 & 41.83 & 41.32 & 24＊＊．61 & & ． 00 \\
\hline 32300.43 & －7．11 & 6.99 & 23.68 & 23．3 & 970．73 & 572．58 & ．00 \\
\hline \multirow[t]{2}{*}{chuym rast Rast} & 00124.90 & & & & & & \\
\hline & \multicolumn{7}{|c|}{} \\
\hline \multirow[t]{4}{*}{} & 2 & 3 & 4 & 3 & \multirow[t]{4}{*}{\begin{tabular}{l}
\(\underset{\operatorname{cis}}{6}\) \\
AEs
\end{tabular}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
0 \\
Lemat 70 nastam wiber
\end{tabular}} \\
\hline & \(4{ }^{430079}\) & nateram & cancurso & Mamen & & & \\
\hline & 58 & cuestis & Hasimbent & crasmo & & & \\
\hline & Farcesid & & as cosmes & Maswivic & & & \\
\hline 2．00 & －37．67 & 27.35 & 100.77 & 198.77 & 18228.95 & 15257.25 & ． 00 \\
\hline 3.95 & －25．97 & 23.8 & 178．49 & 170．63 & 43905.33 & 24981.10 & ． 0 \\
\hline 試。解 & －20． 23 & 25.21 & 203．6\％ & 26．6． & 12930．00 & L2383．44 & ．\(\times\) \\
\hline 20.69 & －22．52 & 22，41 & 209， 26 & 184.74 & 10098.65 & 10982． 38 & ． 00 \\
\hline 4393 & － 28.48 & 20.38 & 40.73 & 269.73 & 50\％． & 9822.48 & ． 00 \\
\hline 3859 & －19．63 & 12．34 & 123.88 & 124． 31 & 7238．24 & 7311.63 & ． 00 \\
\hline 5939．29 & －13．87 & 15.78 & 139.08 & 109．05 & 5390.93 & 9\％28．30 & ． 80 \\
\hline 23030．60 & －13．12 & 12.97 & 90.69 & 09．03 & 5138．28 & 3209.55 & ． 60 \\
\hline 14839．69 & －2．18 & 2.05 & 03.85 & 63.05 & 170\％．76 & 144．35 & ． 00 \\
\hline \[
\text { Prica. } 03
\] & －2．05 & 1.67 & 44． 13 & 34.19 & 4． 38 & ＊＊s & ． 0 \\
\hline & 32737.33 & & & & & & \\
\hline
\end{tabular}

\section*{ Marent vicloviten most \\ 10．000 Hisncom}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
1 \\
 semisusinta）
\end{tabular}} & 2 & 3 & 4 & 5 & \multirow[t]{4}{*}{\[
\frac{5}{1 \operatorname{cosin}}
\]
ATM} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
B \\
2ater 50 Manden une
\end{tabular}} \\
\hline & 20xTm & varamas & cmasmin & naxtun & & & \\
\hline & Cumbi & cosis 5 & nurivemut & cossuma & & & \\
\hline & puszeca & vissunce & 4 cmyeb & ¢aturcir & & & \\
\hline 1.000 & －14．81 & 818．93 & 21．76 & 111.63 & 119285.20 & 127944．15 & 481.25 \\
\hline 3.00 & －13．74 & 618.62 & 29.61 & 91.07 & 85147.96 & 91290．58 & 399.00 \\
\hline 10．00 & －11．66 & 316.44 & 20.85 & 72.33 & 51765.93 & 69116．18 & 321.00 \\
\hline 30.00 & －11．58 & 426.39 & 19.32 & 4.55 & 31822.04 & \(3 \mathrm{m902.90}\) & 271.29 \\
\hline 100．00 & －10．27 & 332．38 & 17.43 & 41.67 & 22764.72 & 224．23．16 & 195.00 \\
\hline 300.00 & －8．95 & 231．93 & 15．63 & 30.47 & 13131.11 & 12466．60 & 143.00 \\
\hline 1000.00 & －3．29 & 171.41 & 13.23 & 21.02 & 6371.23 & \＄900．05 & 50.00 \\
\hline 1000.00 & －5．47 & 104.07 & 18.71 & 15.48 & 2763．49 & 2753.18 & 22.25 \\
\hline 14000，00 & －2．t5 & 43.62 & 6.88 & 9.41 & 673.95 & 607．11 & 11.25 \\
\hline 30000.00 & 2.54 & 7.33 & ． 60 & 1.00 & 11.29 & 29.49 & 5.23 \\
\hline 5ampent u0ss & 25925．85 & & & & & & \\
\hline \multicolumn{8}{|c|}{} \\
\hline 1 & 2 & 3 & 1 & 3 & 6 & 3 & 0 \\
\hline Eecturnte & Nuxemix & maxam & corsmen & wesmex & ACATAL & E5crente & Prase 40 \\
\hline \multirow[t]{2}{*}{} & \％umb & & Gumbsy & cosmixa & 踦边 & 22EA & nutimm \\
\hline & Pcsem & 0xsmace & atasemim & & & Lus．rest & บITM： \\
\hline 1.00 & －14．67 & 654． 38 & 24．3．3 & 195.53 & 18554．4．27 & 205531.31 & 419.25 \\
\hline 3.00 & － 83.73 & 560.10 & 25.53 & 130．18 & 129619．45 & 142560．60 & 380.60 \\
\hline 10.00 & －12．62 & ＋60．16 & 22．73 & 121.47 & 82947．36 & 90211.57 & 235．00 \\
\hline 30.00 & －11．53 & 312．98 & 20．10 & 92.32 & 51937.23 & 55754．94 & 219.25 \\
\hline \(100 . \infty\) & －10．22 & 233.15 & 19.23 & 65.10 & 28593．\({ }^{\text {\％}}\) & 20001．09 & 188.25 \\
\hline 100．09 & －0．09 & 209.07 & 14．29 & 4.93 & 1：069．92 & 13311.50 & 131.25 \\
\hline 1040．00 & －7． 28 & 132．70 & 13.03 & 29.14 & 6476.21 & 6316.69 & 71.25 \\
\hline 1000．00 & －3．37 & 50.43 & 13.12 & 17．73 & 2604．78 & 25．03．28 & 33.30 \\
\hline 10300．00 & －2．31 & 33.14 & 7．0\％ & 1－930 & 386.38 & 587.77 & 11.25 \\
\hline \multirow[t]{2}{*}{} & 25310.72 & & & & & & \\
\hline & \multicolumn{7}{|c|}{} \\
\hline 1 & 1 & 3 & 4 & \(s\) & 6 & 7 & 8 \\
\hline rosie Ras & Murxive & Mexyma & cascurat & natara & actual & Erciatz & 2asser 0 \\
\hline \multirow[t]{2}{*}{} & Hestim & cownam & Hatwimen & casismins & MrEA & nera & Maxeseat \\
\hline & Fixsmo & OESTatice & st cricas & Raswimith & & 成1095 & WEETH \\
\hline 1.00 & －38．38 & 594．t5 & 26．78 & 38．76 & 292075．50 & 327145．42 & 379.25 \\
\hline \multirow[t]{2}{*}{1.09
\(-\quad 10.00\)} & －13．89 & 502.32 & 27.19 & 271.78 & 131726．4s & 320218.03 & 183.00 \\
\hline & －12．47 & 406.93 & 25.17 & 203.13 & 270410.58 & 13356．64 & 395.00 \\
\hline 50．00 & －11．37 & 320．e6 & 23.25 & 120.31 & 11819．13 & 18472．05 & 209.25 \\
\hline 130．99 & －20．0s & 235.67 & 30．99 & 103.05 & 34532． 59 & 39.318 .44 & 243．03 \\
\hline 360.00 & － 0.64 & 1446． 28 & 10.0 & 67.03 & 173 m．00 & 10.22 .60 & \％9．60 \\
\hline 1000.00 & －6．98 & 102.20 & 15.73 & 39.08 & 649．75 & 65\％．37 & 35.25 \\
\hline 1000.00 & －5．08 & 34.78 & 12.89 & 23.32 & 2883.6 & 2980．49 & 28.85 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
10000.00 \\

\end{tabular}} & －2．34 & 22．10 & 1.39 & 10．89 & 629．9\％ & 422.17 & 6． 6 \\
\hline & 21303．6\％ & & & & & & \\
\hline
\end{tabular}

\section*{
}
10.03 घ

caberatem ention corams

\section*{}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
2 \\
comeran ctidut Cumex
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
1 \\
tamsuat \\
wawnum \\
5MTM
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
－ \\
conmims \\
Rounimin \\
E CHMT
\end{tabular}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\(\operatorname{cosixiz}\)} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{204x Ti varduria cyevis} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 120 & －9．01 & 2879．\({ }^{\text {ch }}\) & 12.47 & 03.10 & 200\％7．\({ }^{\text {a }}\) & & 1580.00 \\
\hline 3.50 & － 9.8 & 2004.98 & 20．3数 & 10．02 & 213005.03 & 210155.68 & 12.95 .00 \\
\hline 10．00 & － 0.35 & 2380．40 & 15.48 & 32．13 & 2：2732．05 & 133123．22 & 102 ．00 \\
\hline 20．03 & －7．23 & 2004． 24 & 13.74 & 39.08 & 01734． 23 & \＄0144．2．41 & 733.00 \\
\hline & －6．47 & 925.23 & 12.23 & 27．4．4 & 4245.12 & 4920．07 & \＄29．00 \\
\hline \％\({ }^{\text {a }}\) ． 6 & －3．40 & 649.40 & U\％．83 & 19.25 & 224.4 .25 & 21944．63 & 253.00 \\
\hline 1020．00 & －4．93 & 373.02 & 0．67 & 13.58 & 0314.83 & 6evo． 5 & 163.60 \\
\hline 1200．00 & －2．35 & 186.62 & 9．\({ }^{\text {d }}\) & \％．68 & 2295．48 & 2220.79 & 23.35 \\
\hline 10000．00 & ． 88 & 38.92 & ．\({ }^{3}\) & 3.98 & 178.39 & 24t．0？ & 8.00 \\
\hline mestimin woce RATE & 10144.17 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline & \％amim & 22Tmss & centmux & varcmen & acrose & 4Strenmi & Camere \\
\hline & \％mat & Wremem & 405mam & comand & 4Ea & A2m & W上turi \\
\hline & camesin & & Hexmm & & & cisma & Diman \\
\hline 2.09 & －9．92 & 2147．40 & 17.25 & 14.4 .43 & 492225.77 & 409353．73 & 1403.25 \\
\hline 3.03 & －3，29 & 270\％．16 & 30．46 & 274．89 & 381050.08 & 234．374．64 & 1159．23 \\
\hline 30.00 & －3． 38 & 1400． 17 & 13．30 & 44．09 & 1753TE． 34 & 207235．07 & 193．00 \\
\hline 20．03 & －7． 39 & 142．7． 36 & 13.25 & 60．40 & 102216．5 & & 675．03 \\
\hline 100.63 & －6．47 & 780.15 & 12.20 & 39.61 & 43120.05 & 48202.15 & 461.25 \\
\hline 309.00 & －5．40 & 514．73 & 10.46 & 25.50 & 21933．30 & 23329.05 & 23．\({ }^{2}\) ．09 \\
\hline & －4．03 & 257.15 & 3．53 & 15.17 & 7327． 93 & 6933.00 & 343.02 \\
\hline 300.00 & －2． 35 & 223.0 & 5.89 & 8.85 & 1952.03 & & 61.23 \\
\hline 100200 & ．7\％ & 29.16 & ．00 & 3.95 & 163．24 & 103．E2 & 0.00 \\
\hline maximit cus RATE & 16040.80 & & & & & & \\
\hline
\end{tabular} RATE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & 2 & 3 & 4 & 5 & 6 & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
8 \\
 \\
 L2THIT
\end{tabular}} \\
\hline & Haximumal & Hemmint & crumemmin & ＊idum & Hexum & & \\
\hline & Wxymil & \％cumatim & Waternem & cratsumb & cext & & \\
\hline & Nwatmicm & & 6x cazturia & Wameremat & & & \\
\hline 1.00 & －9．83 & －1839．76 & 17．4 & 231．63 & 60270.33 & 76331．32 & 2333．23 \\
\hline \＄．04 & －9．85 & 8458.72 & 15.82 & 192．69 & 623 30.93 & 678784． & 2023.60 \\
\hline 10.3 & －3．33 & 1205.64 & 13．39 & 43.53 & 2373 \({ }^{\text {ctu．}} 37\) & 209303．44 & 73．80 \\
\hline \＄70．00 & －7．40 & 912． 68 & 10.07 & 43.62 & 12405802 & 2TOMb & 573．64 \\
\hline 140．03 & －4．4．5 & 689.78 & 3 \({ }^{3}\) & 37．094 & 31538．94 & & 372.2 \\
\hline 520 & －3． 3 \％ & 23 \({ }^{\text {a }}\) ． 72 & 16．e4 & 3．73 & & 284．83．4 & 224．03 \\
\hline 4 & －3．\({ }^{3}\) & 295.53 & 0．61 & 24．89 & & 6403． 58 & 149．32 \\
\hline 120，\({ }^{\text {a }}\) & －2．35 & 98．33 & 3．\({ }^{\text {W }}\) & 9.63 & 2973．64 & 204． \(0^{4}\) & 68.25 \\
\hline Lexdere & ＊＊7 & 22．035 & ． 3 （8） & 3.3 & 123．02 & 边3．38 & 6．03 \\
\hline & 5353．35 & & & & & & \\
\hline
\end{tabular}

\section*{
}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\left(\operatorname{cmceng}^{2}\right.
\] & & \begin{tabular}{l}
tucisis \\
5050 \\

\end{tabular} & & & & & \begin{tabular}{l}
－ \\
samer 50 ETMOM v2Fik
\end{tabular} \\
\hline \(\cdots 80\) & － 83.99 & 33.92 & 112.93 & 112.93 & & & \\
\hline 3．03 & \[
-\$ 1.61
\] & 31.40 & 103．96 & 107.94 & 17360．8 & 11842.21 & ． 00 \\
\hline \(25^{40}\) & － 3.8 & 68.80 & 102.19 & 102.19 & 15524.24 & 18878．80 & －08 \\
\hline 10．03 & －63．21 & 46.11 & 95.65 & 96.65 & 14600． 32 & 22014．60 & ． 00 \\
\hline 209．65 & －64．09． & 43.02 & 90.18
83.85 & 90.18 & 12177.62 & 12201.02 & ． 00 \\
\hline 1023．60 & － 39.48 & 36.39 & 76.31 & 80.85 & 10536.45 & 1059．75 & ． 00 \\
\hline 949．03 & －32．0 & 32.73 & 76.18 & 76.31 & 8713.29 & 6734．34 & ． 0 \\
\hline 1200.63 & －21． 38 & 29.23 & 59.27 & 69．71 & \({ }_{5} 159.23\) & 3077.11 & ． 41 \\
\hline 2020．03． & 312．97．47 & 23.42 & 69.09 & 59.27
49.09 & 5200．29 & 5268.64
3610.18 & ． 00 \\
\hline nimeran cina & 331497.12 & & & & & & ． 60 \\
\hline
\end{tabular}

解远

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
mivenst \\
（
\end{tabular} & \begin{tabular}{l}
2 \\
3ativer \\
단TTTT․ \\
Taswavi
\end{tabular} & & 4 censiats Maf c゙ージロ & \begin{tabular}{l}
5 \\
Rarcess \\
CROSST2． \\

\end{tabular} & \[
\begin{gathered}
\text { GALAL } \\
\text { AREA }
\end{gathered}
\] & & \begin{tabular}{l}
． \\
RAOLT TO Maxizert WIDTH
\end{tabular} \\
\hline 2.83 & －38．23 & 53.13 & 199．11 & 137.11 & & & \\
\hline 3.68 & －Ea， 01 & 30.69 & 152.87 & 239.12 & －3556．60 & 26582.51 & － 00 \\
\hline 23．63 & －48．08 & 40.01 & 243.32 & 152．97 & － \(5 \geq 2.40\) & 26212.23 & ．04） \\
\hline 30．40 & －65．32 & 45.19 & 213．35 & 20．35．45 & ［－6．0．7） & & ． 00 \\
\hline 1090 & －4．26 & 42.10 & 2\％．21 & 128．01 & 10575 & 19255．99 & ． 00 \\
\hline & － 5 ． 05 & 35.96 & \(2 i 5.74\) & 116．0．76 & 160．9．6 & 16577.31 & ． 0 \\
\hline 25090 & －35．34 & 35.32 & 1 c 5.65 & 110.74
105.65 & 11595．83 & 16301．59 & 0 \\
\hline 3 3 9， 60 & －38． 30 & 33.45 & 94．35 & 103．65 & 115sbem & 11723.63 & ． 00 \\
\hline 2903 & －23．E5 & 26.72 & －6． 27 & 96．39 & 9333.71 & 9385.60 & ． 00 \\
\hline & －21．6 & 21.53 & 6.78 & 60.27 & 6746.68 & 6754．87 & ． 09 \\
\hline \％ & 291049． 15 & & 6． 76 & 4.76 & 6365．53 & 4391．70 & ． 00 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} & & \[
\begin{aligned}
& 3^{3} \\
& x+2 \times y \\
& \text { DIS. }
\end{aligned}
\] & 4
\(\operatorname{cosen}-2\)
\(\cos +\pi=3\) & \begin{tabular}{l}
Maresia \\
cossitu \\

\end{tabular} & & & \begin{tabular}{l}
8 \\
andet 70 （ UTHTM
\end{tabular} \\
\hline 1．00． & －52．02 & 51．33 & 371.8 & 271.18 & －220． & & \\
\hline 3．63 & －32．34 & 47.45 & 236.5 & 235.25 & 40053．46 & 60153．68 & ． 00 \\
\hline 13．43 & ＋6．67 & 46.58 & 243．：88 & 263.28 & 35395.10 & 35838．97 & ．00 \\
\hline 2m．th & －40．62 & 63.76
40.57 & 228．：88 & 220.76 & 31653.82 & 31495.79 & ． 00 \\
\hline 239403 & －37．38 & 40．57 & 212．84 & 211.74 & 25951.03 & 27011．46 & ． 00 \\
\hline 8500.3 & －33．69 & 33.39 & 184.90
174.59 & 144．90 & 22620.10 & 22893．70 & ． 00 \\
\hline Pems， & － 29.49 & 29.67 & 176.59
153.73 & 178.59
155.73 & 14318.47 & 13341.13 & ． 00 \\
\hline 200．\({ }^{\text {cha }}\) & － 2.3. & 20.33 & 127.05 & 127．00 & 1613． \(4 \times 3\) & 16237.05 & ． 00 \\
\hline \％ & 129985 & 18.43 & 96.16 & 96.3 & 5\＄59．23 & 9713.16
5571.42 & ． 00 \\
\hline Rame & 152995 & & & & & 351.42 & ． 00 \\
\hline
\end{tabular}

\section*{catchand rateur cormins
}

\section*{}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\frac{1}{\cos x}
\] & \begin{tabular}{l}
\[
2
\] \\
wamina
\end{tabular} & \[
\operatorname{man}^{3}
\] & \begin{tabular}{l}
1 \\
Cumservis
\end{tabular} & \[
\frac{5}{40}
\] & c ACTEAL & \[
\frac{7}{\operatorname{crctan}}
\] & \\
\hline wsucremeral & crum & courexmo & cuewtura & cussurad & area & 4exa & ntaviris \\
\hline & pascrices & mexaticy & 4 cmim & Mesumbra & & cempa & Wrimil \\
\hline 2.ca & -38.57 & 990.00 & 4.33 & 158.89 & 53422.66 & 22039.74 & 624.00 \\
\hline 3.09 & - 3 ¢ 47 & 578.9 & 61.06 & 149.32 & 2320.40 .45 & 273743.75 & 551.28 \\
\hline 10.0.0 & - 28.02 & 74. 81 & 57.23 & 159.79 & 171190.23 & 172549.42 & 683.69 \\
\hline 10.08 & -29.84 & 691.54 & 53.58 & 115. \({ }^{\text {a }}\)) & 124323.45 & 123044.90 & 199.00 \\
\hline 100.03 & -25.08 & 317.22 & 49.21 & 91.43 & 25073. 18 & 01000.13 & 123.00 \\
\hline 100.0 & -23.59 & 436.43 & 49.85 & 72.45 & 56030.06 & 22804.29 & 239.25 \\
\hline 1000.00 & -20. 83 & 331.05 & 37.53 & 53.28 & 32438.44 & & 155.25 \\
\hline 3000.e9 & -16.81 & 240.18 & 33.45 & 45.59 & 18960. 53 & 16403.07 & 29.25 \\
\hline 1000.09 & -12.12 & 147.83 & 25.33 & 35.00 & 2417.30 & E798. 25 & 26.09 \\
\hline 30400.09 & -6.31 & 63.67 & 17.8 & 22.64 & 2535.15 & 2606.81 & 15.00 \\
\hline Harctut & 60157.04 & - & & & & & \\
\hline
\end{tabular}

\section*{1A:E}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Corsir Paver \\

\end{tabular}} & 2 & 3 & 6 & 3 & 6 & 7 & B \\
\hline & Texymma & Emerms & Cammermiz & & \multirow[t]{3}{*}{AETHE AnEA} & & \multirow[t]{3}{*}{RARGE TD mstricis 4 WTH} \\
\hline & tex mix & & & \(60^{2} 5848\) & & ntex & \\
\hline & & cuszutico & Nas mixmit & Wemwemyma & & Ensmum & \\
\hline 1.00 & -304.40 & 22. 22 & 垩, in & 35.85 & 479703.03 & 326171. \({ }^{\text {2 }}\) 3 & 5454.25 \\
\hline 3.00 & -34.33 & 140.32 & 63.43 & 295.60 & 33*590. \({ }^{3}\) & & 5230.40 \\
\hline \(10^{4} 80\) & -32.33 & 692.73 & 59.22 & 23.80 & \(25+354.46\) & 272282.23 & 440.00 \\
\hline 30.00 & -29.35 & 48.7 & \$3.04 & 192.31 & 1.35072.06 & & 379.25 \\
\hline Heambis & -24.40 & & 53.33 & 24.25 & 111543.74 & 116259.04 & 205.25 \\
\hline \(30^{3}\) & -23.304 & 343.30 & 4.6.73 & 112.3* & 65376.97 & & 22.4.02 \\
\hline 1000.03 & -20.38 & 280.0 & 42.38 & 70.40 & 2 t 23.27 & 31294.07 & 180303 \\
\hline & -18.48 & & 38.89 & 58. 11 & 10371.77 & 18593.15 & 99.08 \\
\hline 100070 & -22.31 & 117.79 & 27.63 & 37.71 & 7021.55 & 565.65 & 20.23 \\
\hline 302403. \(0^{4}\) & -6.84 & St. \({ }^{2}\) & 17.42 & 23.40 & 2203.66 & E25303 & 15.0 \\
\hline macerer mix & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & - \\
\hline & valchumix & ciamy mix & casmum & TMuTumum & ambuct & 2my \({ }^{2}\) & \\
\hline & \(4 \mathrm{4c}\) & csumman & Hecrutw mu & cusw 310 & 4nem & cida & cust \\
\hline & 5uxextum & 23Tatm & & & & & WRETH \\
\hline 1.04 & -3 3.3 & 458.70 & 77.42 & 627.67 & 774589.37 & 87838.46 & 531.23 \\
\hline 3.63 & -34.030 & 74.84 & 73.39 & 510.40 & 365472. 22 & 63983.35 & 483.00 \\
\hline 12. \({ }^{3}\) & - 11.68 & \(6{ }^{2} 4.78\) & 64.73 & 433.76 & 223338.63 & 4870 & 309.003 \\
\hline 20.00 & & 5 ta .05 & 44.3ib & 325.23 & 2566:7.22 & 2033 EL .92 & 34.23 \\
\hline 200 4 (49 & -805.30 & 410.32 & \$18.99 & 243.33 & 154628.09 & & 255.00 \\
\hline TMa, ex & -23.45 & 213.70 & 53. 93 & 174.86 & 43933.97 & 940 \({ }^{\text {cku }}\) & 195.09 \\
\hline 2003 & -19.92 & 232.39 & 403.97 & 880.83 & 4409.63 & 6959.85 & 1\%3.00 \\
\hline 32cmode & - 83.82 & 335. \({ }^{3}\) & 37.94 & 77.38 & 20E33.204 & \%azem.48 & 89.23 \\
\hline 100wath & -21.32 & Es.4.8 & 423.34 & 45.4 & 1220.63 & 7208.28 & 33.30 \\
\hline 10049.4** & -9.00 & 37.39 & 14.37 & 23.03 & 1390.38 & & 13.3 \\
\hline & 34078.48 & & & & & & \\
\hline
\end{tabular}

\section*{casumx Namein}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\frac{8}{4} \operatorname{men}^{2}
\]} & \multirow[t]{4}{*}{\[
\frac{2}{4-5}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
3 \\
UTETA \\
04825 \\
Hensure
\end{tabular}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
5 \\
 cancrus CLITETK
\end{tabular}} & \multirow[t]{4}{*}{\[
\operatorname{cig}_{0}^{6}
\]} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{Racis 20 userin WHOTE} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 243． & －93．3 & 1643．23 & 53.09 & 178.95 & 2ma3． 13 & 2ming． 8 & 1189.25 \\
\hline 3.89 & －22． 为 & 180．3．87 & 59.38 & 151.8 & 2m309．09 & \＄2185． 72 & 1023.00 \\
\hline \％．43 & － & 1333.04 & 67.9 & 123.10 & 274531． 39 & 37237.05 & 669.25 \\
\hline 路醇 & － 75.75 & 1872.12 & 43.50 & 10.10 & 198434t．09 & 14852．37 & 701.25 \\
\hline E\％ 9 & －\％ 3 ， 69 & 48.53 & 49.15 & 78.14 & 124900．65 & 123353.02 & 531.25 \\
\hline 23．th & －21．57 & 752.95 & 3.38 & 61.11 & 02228． 22 & 74.220 .58 & 349.00 \\
\hline Rex．es & －89．8 & 2城．\({ }^{\text {g }}\) & 31.77 & 40.18 & 45737.05 & 62376.35 & 72.25 \\
\hline 3 Sm & & 374.63 & 23．89 & 37.31 & 23359.47 & 28155.76 & 71.35 \\
\hline 2030．3 & － 3.73 & 20．3．\({ }^{8}\) & 28.17 & 23．52 & 0712.68 & 6est．91 & 40.00 \\
\hline －2000 & come 3.72 & 63.80 & 19.52 & 14.10 & 1642.05 & 1876．92 & 15.00 \\
\hline 4． \(\operatorname{Hax}^{20}\) & \(\operatorname{sog} 3.03\) & & & & & 3r．s． & 13．00 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
\[
8
\] \\
 （2x）w－min）
\end{tabular}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
4xiskx \\
2rimping \\
themg
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
3 \\
青至matis \\
Fansizu \\
\(4-5]\)
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
C \\
 AREA
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
 472 \\
83．43
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
易ATETE 70 \\
 ELETH
\end{tabular}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 2 & & 8785.4 & 31．\({ }^{\text {a }}\) & \＄8．033 & 7c3estat & 唇ぎ380． 83 & 1121.25 \\
\hline 3．34 & － 83.54 & & 51.11 & 20．0．0 & 373139．23 & 62092．63 & 980.00 \\
\hline \％\({ }^{\text {cosma }}\) & － 2.07 & 1233．77 & 47．E1 & 28.17 & 332350.23 & \(4 \mathrm{c}+23.35\) & 811.25 \\
\hline 3．463 & －63．78 & 1043．43 & 4.53 & 119．3．\({ }^{\text {a }}\) & 2 E 109.6 & 27e 27.05 & 675.00 \\
\hline & －26．63 & 837.6 & 49.74 & 122.07 & 161021.75 & & 528．00 \\
\hline & －23． 23 & 647.53 & 35．93 & 29．9 & 93548．34 & 4 4 \＄22． 93 & 349.00 \\
\hline 2030．030 & －88．80 & 449.43 & 3，\({ }^{2} 5\) & 68.68 & 40725．23 & 46203． 27 & 255.00 \\
\hline & －18．89 & 307． 30 & 21.24 & 42．64 & 23538．83 & 22537.93 & 120.60 \\
\hline 1430． & －9．71 & 163.33 & 20.48 & 20.11 & 7Es4．03 & 7359．59 & 35.25 \\
\hline 5xich． & \(-3.68\) & 5．4＊ & 89.33 & 26.26 & 1515．36 & 1538．78 & 15.00 \\
\hline & 48323.43 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & 2 & 3 & 4 & \(s\) & 6 & 7 & \％ \\
\hline & \％exmes & vamma & consunut & cerimst & 20tid & Maxmix & 2xis 79 \\
\hline & 4 m & Exwumid & 以umumer & chasmes & －120 & 4， & maverua \\
\hline & cremmex & curume & & & & Eversm & Wambu \\
\hline 1．09 & －23．58 & 3tas． 79 & 4．5．6s & 160，38 & 40210．7s & & 2151.25 \\
\hline 3.03 & －狺，标 & 2940． 10 & 43.18 & 133.91 & 630102.24 & 629875．08 & 18.5 .03 \\
\hline 19．09 & －26．69 & 2909．9 & 40.22 & 207.49 & 437807.30 & 627224．43 & 1520．020 \\
\hline 50．00 & －22．33 & 2037.58 & 37. & 60．67 & 20x039．07 & 2030．20．3 & 1259.25 \\
\hline 10.00 & －20．19 & 1658.74 & 31.53 & ＊ 6.49 & 189974． 57 & 328819．00 & 489．00 \\
\hline 1000．6 & －17．72 & 1273.39 & 30．98 & 58．74 & 116312．29 & Le4933．12 & \＄73．00 \\
\hline 1030．00 & － 4 ． 8.4 & 833.08 & 28.21 & 42.13 & 60743.12 & 59740.77 & 165.00 \\
\hline 3003．00 & －12．32 & 533.81 & 24．85 & 32.08 & 27510.97 & 28572.05 & 133.25 \\
\hline 12909．08 & 6.4 & 229.93 & 14.6 & 20.23 & 717． 13 & 72s0．0．4 & 35.00 \\
\hline \＄0204．00 & ．0．2 & 23．03 & ． 6 & 10.22 & 425．93 & C49．63 & 25.00 \\
\hline Haxyen max & 1290．15 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline coss Rats & & muxaxis & cosem & nemach & MCTCAL & 2entur & Remet 30 \\
\hline & 53 & numers & ExTmo？ & casurim & AEA & azea & Wizersat \\
\hline & Eumuen & Huswaile & cemer & Covimita & & Exyex & 施相這 \\
\hline 1．00 & －28． 33 & 3854．33 & 45．39 & 273.16 & 129399 \({ }^{\text {cta }}\) & 1 127an．＊ & 2084．00 \\
\hline 3．4\％ & －26．73 & 2703.52 & 43.25 & 227.73 & 920263．19 & 977312.43 & 1363.00 \\
\hline 20．00 & －2\％．68 & 2240．53 & 4＊＊＊3 & 177.92 & 603859.58 & \(635 \pm 86.73\) & 1283.00 \\
\hline 30．69 & －29．08 & 4609．3） & \＄7．\({ }^{\text {W }}\) & 137． 81 & 37070 mb ． 6 & 605233．44 & 1859．00 \\
\hline 100．00 & － 210.12 & 1413.53 & 新． 31 & 100.13 & 22035．03 & 22046． & 4059．25 \\
\hline 3 max & －17．73 & 2043． & 20．45 & 71．43 & 128985．5 & 123923．\({ }^{2}\) & 628.00 \\
\hline Ham． 13 & － 4.6 .08 & 732．02 & 24．33 & 43.16 & 00713.58 & 16373．38 & 380.09 \\
\hline 1040．63 & －88．38 & 452.18 & 28.63 & 34.10 & 23735．\({ }^{6} 6\) & 94923．33 & 155.25 \\
\hline texico．t3 & 6．62 & 191．58 & 新．\({ }^{\text {\％}}\) & 23.92 & 6538.61 & 6404．23） & 48.25 \\
\hline 54020 & ． 6 & 98．20 & ． 03 & 20.49 & 721．57 & 212．（3） & 15.60 \\
\hline matramm mesm & 2048．20 & & & & & & \\
\hline
\end{tabular} Rave

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & － \\
\hline （axym & \％amerex & Smintum & centinemit & & atum & ExTHumex & 30xame \\
\hline & Wurim & Dusimatmil & Katuratum & matesirma & ama & & \\
\hline & & DTHTAmmex & \(44^{4}\) Hixam & & & & \\
\hline 1．83 & －230．38 & 2004．303 & 媽。 \({ }^{\text {7 }}\) & 4 \({ }^{\text {d }} 7.29\) & 2003423．\({ }^{\text {d }}\) & & 14038．403 \\
\hline 3.40 & －3 \({ }^{\text {d }}\)－ 78 & 3443.4 .3 & 4 4 ．\({ }^{2} 1\) & 391．33 & & & 1599．00 \\
\hline 昭。（4） & －3403 & ［39 \({ }^{2}\) ． 2 & 42． 8 & 248．81 & \％7242． 38 & 493404．03 & 1293．00 \\
\hline 23．4．entic & －24．5 & 442．\({ }^{4}\) & \＄1． 27 & 22A． & 53：490．03 & F7e3．\({ }^{48}\) & 4223．4 \\
\hline 5 \({ }^{3} 4\) & － 30.83 & 1293．39 & 52．748 & 15s．\({ }^{4}\) & \(2{ }^{3}\) & & 735． 29 \\
\hline 34.4 & －12．65 & \％04．04 & 3 3.80 & 119．49 & 147520．89 & 89384．\({ }^{\text {a }}\) & 538.25 \\
\hline & \(-28.33\) & 344．03 & 33．3 & 45.8 & 61：20．33 & & 323．00 \\
\hline 19040． & －\({ }^{\text {E }}\) ． 22 & 34．4．23 & \％\％\％ & 39.98 & 21032．77 & 2043． 33 & 140，02 \\
\hline & －4． 53 & 147．64 & 15． 214 & 24．65 & 5373． 38 & & 4，\({ }^{\text {d }}\) \\
\hline & ． 2 & 42.25 & ． 0 （2） & 10.18 & 642．43 & 6 \(5^{4}\) ， & 15．30 \\
\hline mancia \(x+2\) RMIS & 32704．044 & & & & & & \\
\hline
\end{tabular}

\section*{CHETMTM PnPCRE CMONA}

\section*{}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 2 & 3 & 4 & 3 & 6 & 7 & c \\
\hline \multirow[t]{3}{*}{} & centers & Hacres & cerackit & \％axtma & acruss & Ex93nacis & Mrics \\
\hline & Examis & Sumat & Wemarcmie & cosucima & cres & EPa & uskevem \\
\hline & nexturs & cextumis & 48 ccze & camumati & & casmer & \\
\hline 2．03 & － 9.11 & 490．69 & 0.25 & 94．96 & 23835． 52 & 42745．09 & 323.00 \\
\hline 1：23 & －4．00 & 410.17 & 3.08 & 49.08 & 26133．09 & 20983． 37 & 271.25 \\
\hline 90．60 & A．Et & 123．38 & 6.97 & 31.57 & 15402． 28 & 16394.13 & 209.25 \\
\hline 30．03 & －1．43 & 252.56 & 6.88 & 22.61 & 034．07 & 9087.49 & 159.25 \\
\hline 1093 & －2．23 & 173．57 & 3.33 & 18.61 & 4173.45 & 4121.72 & 109.23 \\
\hline 50 & －2．76 & 124．63 & 4.88 & 9.6 & 1753． 3 & 1490． 10 & 63.00 \\
\hline 530.28 & －2．23 & 35.43 & 2．\({ }^{4}\) & 6．008 & 439.07 & 483.68 & 26.05 \\
\hline 3409 & 42 & 12，\({ }^{2}\) & 08 & 2.0 & 32.33 & 41.98 & 3.03 \\
\hline mbichira ect & 2146． 26 & & & & & & 3.0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 \\

\end{tabular} & \begin{tabular}{l}
2 \\

\end{tabular} & \begin{tabular}{l}
3 \\

\end{tabular} & \begin{tabular}{l}
\[
4
\] \\
chandiverix
\end{tabular} & \begin{tabular}{l}
3 \\

\end{tabular} & \begin{tabular}{l}
6 \\

\end{tabular} & \begin{tabular}{l}
\[
8
\] \\
4xtyturex
\end{tabular} & \[
{ }^{8}
\] \\
\hline & mexhtiv & & nambucy & cmaydum & Andes & ARRA & \\
\hline & Paturcmas & Tw moxmm & & 2incivemxa & & & 1235］ \\
\hline 3．303 & － 9.7 & 439.67 & 9．33 & 33．09 & S943\％．03 & 65543.69 & 2060 0 20 \\
\hline 3.03 & －4．4＊ & 348.47 & 7. & 71.68 & \(372 \pm .20\) & 42203，\({ }^{2}\) & 239.25 \\
\hline N．4．（4） & － 4.4 & 273．37 & 7.22 & 50．35 & & & HR2． 25 \\
\hline & －3．4a & 2010．93 & 4．4．8 & 34．30 & 1475130 & & 332．25 \\
\hline 1493000 & － 24.45 & 139，35 & 3.38 & 20．73 & 4823．25 & H638．＊ & 48．23 \\
\hline & －4．34 & 䮙。栍 & 4.67 & 31．84 & 1378．\({ }^{\text {d }}\) & 1677． 73 & 40．\({ }^{2}\) \\
\hline & －2．22 & 34.37 & 3.85 & 9．312 & & & 3.25 \\
\hline 30920］ & －19． 58 & 0．92 & ． 60 & 1．92 & 28.12 & 25043 & 3.08 \\
\hline WM3 & 絾通。 & & & & & & ．00 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 2 & 3 & 4 & 3 & 6 & 7 & ＊ \\
\hline 203m & mammex & & Cumamma & & Humede & & \％ute 39 \\
\hline & & 204xMrin & W2 Wutum & cotascumy & A388 & 4， & 2aterex \\
\hline & Wencmutu & & & Mativicumb & & & 5018493 \\
\hline 30＊ & －3．763 & 348.13 & －4\％ & 2094．7．70 & & & 23．039 \\
\hline 2， 40 & －4．48 & 313．91 & － 23 & 127．73 & 3593.20 & 2803a， & 2495 \\
\hline \％ & －4．039 & 27s．0．4 & 6． \(0^{3}\) & 74.85 & & & 259.25 \\
\hline 373 & －\({ }^{3} .3\) & 237．40 & 1．23 & 25．73 & & & ［10．23 \\
\hline 129．40 & －3．38 & EM3．32 & 4．23 & 20．48 & & 4，mixive & 53.08 \\
\hline & －3．34 & 98． 29 & 6． 38 & 3．\({ }^{\text {a }}\) ． 5 & 125045 & 950．38 & 3 3 ．\({ }^{\text {a }}\) \\
\hline － & & TRent & \(4{ }_{4}\) & 3．ma & & 924 & 道．\({ }^{3}\) \\
\hline Stumotilit & 8.82 & 3.42 & （3） & 1．63 & 4.83 & － & 3， 3 \\
\hline & 8932．403 & & & & & & \\
\hline
\end{tabular}

\section*{ \\ Lis cise nis curas}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\[
\frac{8}{5}
\]} & 3 & 4 & 8 & \multirow[t]{4}{*}{\[
\operatorname{cosen}_{\operatorname{cin}}
\]} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{Rever Humed W2022} \\
\hline & & Tsam & cosemis & Expers & & & \\
\hline & & cater & Exuma & catmon & & & \\
\hline & & civel & Camal & casiuca & & & \\
\hline 123 & －4．fis & 20． 23 & 7.05 & 47.29 & 60ves9．29 & 1933．88 & 389．00 \\
\hline 208 & －2．C3 & 22．es & 6.51 & s3．cs & 20301． 61 & 63254．53 & 491.25 \\
\hline 12．03 & －2．t9 & 283．03 & 3．09 & 23.59 & 23273．m & 23351．3\％ & 380.00 \\
\hline & －2．73 & 423． 58 & 9．88 & 188 & 12358.23 & 12313．39 & 233.00 \\
\hline 12.6 & －2．24 & 273.83 & 8．85 & 10.82 & 6 637．12 & 4Ticas． 3 & 153.25 \\
\hline 213．25 & －1．47 & 163.67 & 3.28 & 6.69 & 1739.37 & \(4{ }^{483.03}\) & 63.00 \\
\hline 1230．63 & －\({ }^{3}\) & 32.48 & 1.32 & 3.61 & 236．4．4 & 253.87 & 8.68 \\
\hline ETmia \(\mathrm{Bax}^{\text {a }}\) & 209．87 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
208 Risw \\
（ mixuex nia）
\end{tabular}} & 2 & 3 & 4 & 5 & 6 & 7 & ． \\
\hline & 4 & 2mess & cosemes & 2anmes & \(40^{(1042}\) & Esxtemex & cosee mo \\
\hline & Cta & crama & Hewreme & cuseman & cha & 483 & Wumana \\
\hline & Easky & Emisma & Etasme & chemismia & & criss & HETEL \\
\hline 2．\({ }^{2}\) & －6．03 & 43． & 1.48 & 131.37 & 220422.48 & 243247．70 & 400．03 \\
\hline 328 & －3．es & 283．\({ }^{\text {cia }}\) & 8.83 & 28．43 & 7883.48 & 6m02． 38 & 341．23 \\
\hline 㪇。效 & －3．87 & \％\({ }^{\text {cis }}\) ， 43 & 6.12 & 69．3 & 12358． & \＄7R42． 4 & 239.25 \\
\hline 5983 & －3．3碞 & 2038．39 & 5.38 & 97．89 & \(2{ }^{2} 84.85\) & 15509．03 & 189.60 \\
\hline & －3． 22 & 237．68 & 6.43 & 10．73 & 4293.03 & 4483.35 & ＊9．25 \\
\hline 129．48 & －2．43 & 74．38 & & 6.68 & 89．4．\({ }^{\text {dis }}\) & 997．65 & 41.23 \\
\hline 833，\({ }^{3}\) & －． 57 & 23.59 & 1.67 & 3.8 & 133.98 & 185.82 & 0.60 \\
\hline nites com & 23073 & & & & & & \\
\hline
\end{tabular}

\section*{}

\section*{Less nexirn rux 40. wis}
"
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\[
8
\] \\

\end{tabular}} & 2 & 3 & 4 & 5 & 6 & 1 & \multirow[t]{2}{*}{8030} \\
\hline & Hxame & Exsw & crastania & maxisat & ancuas & Exaramia & \\
\hline & Whers & ctuma & Emzurim & cursmum & ~03 & 52x & Hituruty \\
\hline & cusimix & mumame & & & & & U家䢒 \\
\hline 120 & -2.88 & 1esto. 31 & 3.08 & 34.48 & 91539.03 & 97232.99 & 1235.09 \\
\hline 36 & -2.54 & 1353. & S. 38 & 29.72 & 98113.25 & 5042. 22 & 011.23 \\
\hline 10.63 & -3.23 & 145.20 & 4.76 & 29.30 & 23947. 7 & 99xas.69 & 597.25 \\
\hline 50.63 & -1.73 & 464.73 & 4.18 & 21.40 & 240408 & 180\%tis & 739.60 \\
\hline 240.03 & -1.39 & 40.8 & 1.38 & 7.6 & 2277.85 & 4nt3. 05 & 209.23 \\
\hline 9\%ass & -. 72 & 193.73 & 2.17 & 4.28 & 1324.32 & & 60.00 \\
\hline 1049 & .49 & 51.84 & 208 & 1.57 & 61.98 & 76.78 & 5.25 \\
\hline & 2277.E3 & & & & & 7 \%. & 3.25 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multirow[t]{2}{*}{\({ }^{2}\)} & \multirow[t]{2}{*}{\[
{ }^{3}
\]} & \multirow[t]{2}{*}{consury} & \multirow[t]{2}{*}{\[
\frac{3}{\text { witan }}
\]} & \multirow[t]{4}{*}{\[
\begin{gathered}
3 \\
\text { acruas } \\
\text { engen }
\end{gathered}
\]} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
- \\
2cticis cexmex 4854
\end{tabular}} \\
\hline & & & & & & & \\
\hline & cwne & Cumemb & Couswnin & censuma & & & \\
\hline & -6xickia & Exatmer & 48 chasia & Hemtraxa & & & \\
\hline 1.00 & -2.a2 & 2570.73 & S.99 & & 177039.09 & 108025. 73 & 793.25 \\
\hline 3.4 & -2.38 & 204.97 & 3.48 & 73.87 & empes. 67 & & 373.00 \\
\hline & -2. \({ }^{\text {a }}\) & 6 \({ }^{\text {2 }}\)-22 & 6.43) & 44.78 & 28791.78 & 4230.4 & 380.00 \\
\hline 390 & -1.70 & 743.59 & 6. \({ }^{\text {d }}\) & 23.720 & 15973. & 19385.22 & 25723 \\
\hline \$8.09 & -1.30 & 149.za & 3. & 12.63 & 3312.47 & 1033. 33 & 120.00 \\
\hline 30.30] & -. 71 & 3.71 & 2.8 & 4.83 & & 439.85 & 41.23 \\
\hline 5se.es & . 58 & 25.4 & . 0 & 1.4\% & 13.409 & 27. & 5.25 \\
\hline mans rix riz & 2003.73 & & & & & & \\
\hline
\end{tabular}

\section*{CuEcersin InilCR Costrins}

10.000 Kix

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & 8 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline & \％atcs & Mrexam & cansumb & Esictent & centar & ExTM359 & nambe 20 \\
\hline & CNTHD & crume & crevtuy & casswnu & AEEA & cex & mazrana \\
\hline & & ExTHEm & & HELSWLDIE & & 24585 & Hzeras \\
\hline 1．0的 & －28．02 & 27.93 & 60．75 & 60.74 & 5331.16 & 5333.89 & ． 00 \\
\hline 2． 68 & －23．58 & 25.63 & 57.57 & 57.57 & 4785.07 & 4791.43 & ． 00 \\
\hline 29．63 & －24． 83 & 24.73 & 33.87 & 53.87 & 4142.71 & 4200.32 & ． 00 \\
\hline 環。运 & －23．19 & 23.11 & 59.28 & 50.25 & 3848.91 & 3835.6 & \\
\hline 158.8 & －21．21 & 21.03 & 45.99 & 65.89 & 2039.45 & 3053.69 & ． 00 \\
\hline 25\％． 03 & －19．24 & 29.24 & 42.70 & 41.70 & 2511.78 & 2920.12 & ． 00 \\
\hline \％\({ }^{2}\) & －15． 81 & 15．63 & \＄3．63 & 36.63 & 1012.53 & 1218．00 & ． 00 \\
\hline 2400． 0 & －16．23 & 14.14 & 20．es & 30.84 & 1371．09 & 2374.53 & ． 0 \\
\hline 12983， & －10．72 & 10.64 & 23.23 & 23.23 & 776.60 & 779.17 & ． 00 \\
\hline 202030．03 & －9．98 & 3．60 & 28.00 & 12.40 & 231.70 & 233.24 & ． 0 \\
\hline Hyy & 2.18 & & & & & ． & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
2
\] \\
123 2 mb
\end{tabular} & \[
\frac{2}{2}
\] & \[
\frac{3}{\cos +\infty}
\] & \[
\operatorname{cracsic}+3
\] & \[
\frac{5}{2 \rightarrow \sin _{4}^{2} 9}
\] & 6 ATEAL & \[
\stackrel{7}{\cos 4 x^{2}}
\] & \[
\frac{8}{\operatorname{Ras}} 10
\] \\
\hline & C． 420 & 40\％utu & & cos35umo & ATMA & an土 & Mnverma \\
\hline & P0wise & Esenta & 58 & & & －14893 & 4 10．： \\
\hline 1.85 & －87．38 & 27.22 & 2＊．33 & 99.35 & 8505.96 & 8319.40 & 00 \\
\hline 3.43 & －25．38 & 23.72 & 93.08 & 93.89 & 7500.19 & 7606.77 & .00 \\
\hline 25．39 & －24．08 & 24.08 & 87.32 & 87.51 & 6550.18 & 6520．9 & ． 00 \\
\hline 喲．04 & －22．38 & 22.24 & 81.35 & 81.26 & 3645．33 & 5693．71 & ． 00 \\
\hline 183.85 & －20．31 & 20.22 & 73.79 & 73.79 & 4600.96 & 6437．73 & ． 00 \\
\hline & －18．23 & 18.14 & 68.24 & 66.24 & 3778． 13 & 2785．34 & ． 03 \\
\hline 2030．30 & －15．65 & 15.10 & 58.8 & 55.85 & 2772.64 & 176）． 79 & ． 20 \\
\hline 230 & －12．85 & 12.71 & 43.55 & 4.65 & 1283．39 & 1872.33 & ． 00 \\
\hline 12385 & －8．74 & 8.69 & 31.93 & 32.33 & 871.92 & \＄75．41 & ． 00 \\
\hline & 85939．39 & & & & & & \\
\hline Paxat & & & & & & & \\
\hline
\end{tabular}

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\qquad\) & 2 naycen E 2531 －25xis & \begin{tabular}{l}
\({ }^{3}\) \\
cossumix \\
23TAKE
\end{tabular} & & \begin{tabular}{l}
3 \\
Marcith Cosesumid BA다네TT
\end{tabular} & crins
AREA & \[
\begin{aligned}
& 7 \\
& \text { EHMED } \\
& \text { HEEA }
\end{aligned}
\] & Easce 50 Hancerm 6LITSH \\
\hline 1.63 & －25．68 & 26.35 & 181．93 & 151.98 & 15082． 38 & 13102．9\％ & ． 00 \\
\hline 3.818 & －24．03 & 26.85 & 171.29 & 171.30 & 13140．97 & 13393.11 & ． 00 \\
\hline 13， \(0^{2}\) & －23．10 & 23.62 & 159.75 & 158．75 & 11620．40 & 11501．33 & ． 00 \\
\hline 38． 62 & －28．29 & 21.17 & 165.37 & 146.37 & 9749.45 & 9769.38 & － \\
\hline 620．63 & －19．13 & 29.12 & 131.68 & 231.45 & 1874．98 & 73 P9．8i & ．\(\times\) \\
\hline 2 Ta 9 & －16．08 & 18.70 & 116.23 & 116.23 & 6141.97 & 6152.61 & ． 0 \\
\hline 200．63 & － 84.08 & 13.99 & 48.00 & 96．08 & 4259.47 & 6289.18 & ． 00 \\
\hline 1089．49 & －19．88 & 10.63 & 74.6 & 74.80 & 2590.02 & 2931．28 & ． 00 \\
\hline 14003.02 & －3．55 & 3.39 & 33.15 & 38.16 & 652.38 & 683．23 & ． 0 \\
\hline & 29373．39 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\begin{tabular}{l}
coserims muncticemuth \\

\end{tabular}} \\
\hline \multicolumn{8}{|r|}{Hinticer mumbut} \\
\hline Tus & cratmy & mertums & coseme & & －4xpez & & Maxas 5 \\
\hline \multirow[t]{2}{*}{} & Hemo & ctemen & RGSTHETET & crserymu & 4030 & & \\
\hline & 84tarixa & 20newn & 080wn & ExMratz & & & Hrosk \\
\hline 4.3 & －18．78 & 1572．51 & 19．\({ }^{\text {a }}\) & 102.0 & 2934 ． 22 & 20330．68 & 049.00 \\
\hline 1．86 & － 2.03 & 1173.05 & 17.78 & 2e． 78 & & 138370．42 & 735.25 \\
\hline 19．84 & －2．78 & \＄82．78 & 14.85 & 63.23 & & \＄6572． 10 & 624.08 \\
\hline 59.3 & －8． 07 & 7\％4．65 & 4．717 & 47.3 & 5m．93．25 & 2tis7．20 & 483.00 \\
\hline & －7． 33 & 577.87 & 20．36 & 33.13 & 52357．35 & 2W32．49 & 362.25 \\
\hline 203．80 & － 2.88 & 609．68 & 20.4 & 28.01 & 18820．43 & 4．313．26 & 224．00 \\
\hline \＄803．\({ }^{2}\) & － 7.98 & 240.4 & 3．35 & 14.40 & 5737．03 & ceste． 31 & 71.25 \\
\hline & －1．96 & 99.27 & 4.6 & 7.78 & 1238．\({ }^{\text {d }}\) & 1189．4 & 24.08 \\
\hline 4anmye 248 & 577．00 & & & & & & \\
\hline \multicolumn{8}{|l|}{gace} \\
\hline \multicolumn{8}{|l|}{} \\
\hline 1 & 8 & － 3 & 4 & 3 & ＊ & 7 & 8 \\
\hline 上sh\％nast & Heximut & & cent \({ }^{4} 4\) & 4xamet & 4mas & ExTremex & 805xis 70 \\
\hline \multirow[t]{2}{*}{（0xtusererc）} & cxictiv & crivers & Ee3senmex & ciosserm & ATHA & & ＊以TMT3 \\
\hline & Bex max & Embens & 4 & Gusmixami & & W483 & LTand \\
\hline 1．403 & －18．73 & 1283．3 & 59．83 & 177．4．4 & 319899．47 & 23787．42 & 8） 21.25 \\
\hline 3.03 & －20．80 & 108．03 & 17．93 & 135．80 & 286890． 21 & 23＊＊30．81 & 655．65 \\
\hline 80.9 & －9．75 & Et5．71 & 20.45 & 123.8 & 140317．13 & 129520.73 & 531.25 \\
\hline \(55^{26}\) & －2．4 & 663.74 & 8．989 & 73.68 & 18573．29 & & 419.25 \\
\hline 時。 & －7． 31 & 678.2 & 13.01 & 83.08 & 3533：．37 & \(37877.2{ }^{\circ}\) & 205．23 \\
\hline & －3．83 & P2． 24 & 81.8 & \＄0．40 & 15042．M & 19777.63 & 193.09 \\
\hline 1504．39 & －3．96 & 133.81 & e． 23 & 19.45 & 4＊39．4．3 & 6473.23 & 89.25 \\
\hline 509．03 & －1．80 & 63．08 & 4.45 & 7.89 & 923.23 & 973．485 & 24.8 \\
\hline & 3536．10 & & － & & & & \\
\hline \multicolumn{8}{|l|}{風突} \\
\hline \multicolumn{8}{|c|}{} \\
\hline 1 & 8 & 3 & 4 & 5 & 6 & 7 & 3 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
（2x R R \\

\end{tabular}} & Tenter \({ }^{3}\) & Mrxisex & Nustmo & （1）Tmim & avishe & Psymix & 18crex 20 \\
\hline & NTM & 8cindim & & Csicsurivi & 教號 & & Cumximed \\
\hline & 9045x404 & －ISTM & 4 \％ & & & Chata & NTH24 \\
\hline 1.89 & －28．70 & 1123．31 & 23．35 & 203.50 & & 184313．30 & 723．00 \\
\hline 3.00 & －vo．\({ }^{3}\) & 933．62 & 48.97 & 258．85 & 329033．33 & & 939.25 \\
\hline 19.80 & & 730．6． & 17.34 & 138．髁 & 177035．48 & & 463.60 \\
\hline 39，\({ }^{3}\) & －3．14 & 35S．33 & 15.78 & 117．8 & 2587\％．\({ }^{\text {B }}\) & 15323．03 & 130．09 \\
\hline 148．3 & －7．38 & 779．70 & 18.33 & 71．068 & 40703：29 & & 2緒．38 \\
\hline & －5． de \(^{2}\) & 249.81 & 18.39 & & 1983．3．3 & 454．39．4 & 14．3．09 \\
\hline 7xumay & －3．43 & 138．31 & 6．s \({ }^{\text {a }}\) & 销．\({ }^{3}\) & \＄277． 31 & 3704 & 02．63 \\
\hline & －1．38 & 43.78 & Q 40 & ＊．33 & ＊89．12 & 98．48 & 83，02 \\
\hline & 3593．\({ }^{38}\) & & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline
\end{tabular}

\section*{ wor mas mutz cumivis}

Hramxum
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\frac{1}{\tan }
\] & \[
\frac{2}{2}
\] & \begin{tabular}{l}
3 \\
cerciant
\end{tabular} & cosumisis & \begin{tabular}{l}
5 \\
5 cosch 4
\end{tabular} & & \[
9
\] & \begin{tabular}{l}
\(\theta\) \\

\end{tabular} \\
\hline & creamis & curima & matimer & cosuram & 4is & cla & \\
\hline & Recrexail & gremsis & 480 & E0wexme & & 起ztis\％ & Hreme \\
\hline 1．3 & －9．44 & 2409．89 & 26．89 & 0.53 & 123835，99 & 239754．45 & 1500．00 \\
\hline 3.28 & －9．38 & 2103.93 & 15.31 & 74.22 & 285848.15 & 23537． 25 & 1388．00 \\
\hline 18．30 & －7，44 & 4837.25 & 13．43 & 82．03 & 109848．38 & H0539．4 & 2055.25 \\
\hline 20.09 & －6． 12 & 1071.57 & 12.88 & 38.73 & cre22． 33 & － 3 3．84 & 018.25 \\
\hline 209． & －5． X & 047.72 & 20．47 & 25.98 & 41047.98 & 53751.08 & 229．09 \\
\hline 548．09 & －4．86 & 633.13 & 8．82 & 17.27 & 10303． 3 & 17113.23 & 271.25 \\
\hline yenem & －2． 38 & 104．4．4 & 3.64 & 9.88 & 4047．34 & 4738.20 & 109.25 \\
\hline 5200． 03 & ． 62 & 62．35 & 00 & 4．42 & 489.05 & 434.83 & 12.25 \\
\hline sxamem & 2283.14 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\stackrel{1}{2}
\] & \[
\frac{2}{2}
\] & \[
\cos ^{3}
\] & casman & cemment & \[
6
\] & \[
\frac{7}{2}
\] & ance T0 \\
\hline （ mamectur & Hewiza & punemem & Exiswinta & craverab & 4＊8 & ciek & mameras \\
\hline & －mexment & Encusis & 48 & \％exwrisi & & 2mientis & Maxa \\
\hline 3.8 & － 2 ． 3 & 2232.93 & 4．38 & 139．76 & 48312．\({ }^{\text {a }}\) & －3204．23 & 1481． 25 \\
\hline 3.68 & －9， 3 & 1057.53 & 15．17 & 237.89 & Tumex & 9iputen & 32 Cb \％ \\
\hline 2． \(0^{464}\) & －9，\({ }^{43}\) & 243．27 & 23．75 & 4．34 & \(1 \times 77.24\) & 120］3．C3 & 299． 3 \\
\hline 2x．0 & M，易菏 & 2729．䪙 & 12． 21 & 13．34 & 9\％3I 54 & & 703．25 \\
\hline 80.80 & －5．83 & 757.85 & 20.58 & 36．49 & 43838.03 & 69723 & 4＊2．23 \\
\hline 319， 69 & 4．23 & 473．83 & 6．89 & 21.65 & 16703.70 & 30183.38 & 372.23 \\
\hline 1609．03 & －6．20 & 218．73 & 3.63 & 10.28 & 383．tes & 813．23 & 50.00 \\
\hline 3300． 5 & ． 4 & 58．6） & 00 & 4.46 & 348． 24 & 143．22 & 11.23 \\
\hline & 3159．53 & & & & & & \\
\hline 4．ab & 极485 & T3 \％owner & 3130 40 & 13 miz 100 & F2 ABCTumb & & \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & － \\
\hline neas Ratm & caveres & noxmsel & cmamers & tumituas & actuan & Exammex & dencie To \\
\hline （exmentis／uT） & 409\％m & －umamis & atmenexa & cmasmas & －\({ }^{\text {and }}\) & 4xasa & Ratismar \\
\hline & & Emames & 4\％mixa & & & & \(4{ }^{4} \mathrm{~m}\) \\
\hline 1.00 & －0．23 & 2089． 31 & 14．43 & 294.25 & 241239．73 & 2acms． 22 & 1205 00 \\
\hline 3.4 & －8．38 & 滑29．61 & 13.42 & 194．79 & & 5ciedub． 92 & 1239.25 \\
\hline 30．030 & －8．43 & 1238.97 & 12.83 & 138.19 & & 3 & 811.35 \\
\hline 20．40 & －6．4． & 918． 18 & 12．580 & 63．90 & 14020.6 & 245457.37 & 573．00 \\
\hline 140 a & －3． 39 & 9to． 2 & 40．89 & 50.9 & & 6404． & \(3 \pm 2.0\) \\
\hline 3 can ， 02 & 4．62 & 233．84 & 0.4 & \％ & 30109．73 & 24932． a \(^{3}\) & 195．20 \\
\hline 2849 & －8．87 & 152．28 & 3.89 & 48．42 & 5um． 82 & 259，\({ }^{297}\) & 72．25 \\
\hline & ． 7 & 36.05 & （2） & 4． 8 & 29.8 & 80］． & 12.25 \\
\hline & 104．03 & & & & & & \\
\hline
\end{tabular}

\section*{}
\(\cos \cos \mathrm{E} \boldsymbol{\operatorname { c o s }} \mathrm{mtan}\)
20．030 Emaxix

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 8 & 3 & 3 & 4 & 3 & － & 7 & 6 \\
\hline 540 Pex & ExTmis & \％rimst & & temmen & crus & 23x \({ }^{2}\) & 20125 20 \\
\hline （2ambuniz） & & Esinad & cosem & comes & 4 L & 2ixa & tumbrai \\
\hline & 5xata & Enuze & cers & Rswnem & & & UL54 \\
\hline \(2{ }^{2}\) & & 98．39 & 209\％e & 103.8 & 12313．23 & 10630．ca & ． 00 \\
\hline 2．\({ }^{\text {a }}\) & 40．39 & 69.8 & 204.45 & 2＊＊．43 & 1200．c9 & 13872.73 & ． 09 \\
\hline 8，89 & 67.28 & 47.48 & 9， 23 & 29．53 & 2083． 58 & 14878．7 & ． 00 \\
\hline 1000 & AT．\({ }^{\text {a }}\) & 4.88 & 29．88 & 98．88 & & 1203．63 & ．00 \\
\hline \(2 \times 30\) & 41． 88 & 42.13 & 68．03 & 0.03 & 12083.83 & 18109.53 & ． 00 \\
\hline 234．4 & － 97.85 & 37．38 & 72． \％\(^{8}\) & 79．3 & 5．33．42 & 2030．59 & ． 00 \\
\hline 2509．03 & －83．84 & 35.03 & 72.33 & 72.23 & 2022．21 & 7803.58 & ．00 \\
\hline 5 3 \＄9．09 & － 59.18 & 23.11 & 63.23 & 63.13 & S535．4．43 & \＄973． 73 & ． 00 \\
\hline T230393 & －93．23 & 25.19 & 93．70 & 52.70 & 4359.8 & 4233.62 & ． 00 \\
\hline 5usmam & －29．87 & 10.33 & 63.93 & 49.53 & 2438．19 & 2513.73 & ． 0 \\
\hline & 102229．13 & & & & & & \\
\hline CuTi & \％噱 & 203853 & 23 29 & 23\％ 2003 & ctarse & & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\frac{8}{8}\) & \[
\frac{3}{x+3}
\] & & & \[
{ }^{6}
\] & \[
7
\] & \\
\hline E．D & 8 marm & Remsab & crasers & Emen & 4 A & 8xamut \\
\hline \％edx & 5xupem & 4 crax & & & & 世家近 \\
\hline － 52.83 & 53．5 & 185．80 & 134．32 & 23073.23 & 24397.77 & ． 03 \\
\hline －60．28 & 40.68 & 103．4． & 203．68 & 2582．8 & 22038．30 & ． 03 \\
\hline CH． 3 & 65． 28 & 203.23 & 17.15 & 22307． 31 & E258．15 & ． 0 \\
\hline －4．50 & 43． 21 & 10．79 & 283.79 & 12051．69 & 1250．0．3 & ． 69 \\
\hline －6．38 & 40.6 & 189.92 & 119.98 & 12077.08 & 15006．21 & ．c9 \\
\hline － & 25． 73 & 180.12 & 110.12 & 13738.18 & 12725．12 & ．03 \\
\hline －39．89 & 23．76 & 98． 28 & 93.20 & 10121.75 & 10233.06 & ． 00 \\
\hline －49．79 & 29.75 & 65.07 & t5．43 & 1764．65 & 7779．3\％ & ． 0 \\
\hline －23．31 & 23.63 & 70.23 & 70.92 & 5173.78 & 3189.25 & ．ci \\
\hline －12．83 & 17.22 & 51．85 & 51．65 & 2381．71 & 2015．35 & ． 0 \\
\hline 1134．39．11 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\frac{1}{(2 x)}
\]} & 2 & 1 & 4 & 5 & \multirow[t]{4}{*}{cenema} & 7 & \multirow[t]{4}{*}{\begin{tabular}{l}
＊ \\
Ratien 50 marcita 47023
\end{tabular}} \\
\hline & & 2masim & cessime & Hatisin & & 25xisum & \\
\hline & EV433 & 5045 & ELTMES & crosmine & & c35a & \\
\hline & ExSterus & & 18 SETH & & & & \\
\hline 2．3 & －93937 & 93， 3 & 248．\({ }^{2} 8\) & 832．62 & 61453.52 & 61513．488 & ． 09 \\
\hline 3.89 & A7．03 & 47.29 & 6\％9．28 & 20．8．35 & 13838． 81 & 37883.72 & ． 00 \\
\hline 5．89 & 4＊＊＊＊ & 4．70 & 259.50 & 235.2 & 2023． 3 & 98039．32 & ． 68 \\
\hline 270．03 & 43．88 & 61.63 & 203．33 & 213.85 & gseman 0 & 25789． 78 & ． 0 \\
\hline 2Siss & － 39.4 & 38.35 & 220.85 & 204.30 & 23303．\({ }^{3}\) & 28234．49 & ． 69 \\
\hline 838.48 & －38．05 & 23.8 & 28， 42 & 18.80 & 139384．82 & 23853.27 & ．00 \\
\hline 5080．03 & －33．09 & 38.77 & & 100.88 & 1393．3．3 & 18887． 26 & ． 03 \\
\hline 839 3 & －\％．09 & 28．58 & 208．49 & 189.08 & 12433．85 & 12488.07 & ． 0 \\
\hline 2050．43 & －29．43 & 29.38 & 238．35 & 107.88 & 483．69 & Csmas． 72 & ．09 \\
\hline \(45 \times 20\) & －23．17 & 13．3030 & 69．65 & 693 43 & 2323． 13 & 2203.23 & ． 00 \\
\hline catima mis & 635as． 3 & & & & & & \\
\hline
\end{tabular}
 Eht Huse cury cermax

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline cana & 3 & 3 & 6 & 5 & 6 & 7 & 3 \\
\hline & & － & casmy & & Arrent & & 20，\({ }^{2}\) \\
\hline & & 8wouryinio & Tramumurw & crinaumu & arma & & \\
\hline & － 3 H4xTx & & & & & & 6x＋ma \\
\hline 8． 0 & －38．30．8 & （49\％．98 & \％ & 43．4．19 & & 9043T9． 93 & 573．08 \\
\hline 3．463 & －It． 44 & 70．0．0 & 78.51 & 362．46 & & 70342． 21 & 823．25 \\
\hline 14． & －24．4．03 & C42． 13 & 43．43 & 434．4．970 & \(4{ }^{12}+3\) & 4702T．39 & \\
\hline & \(-17.30\) & 333.02 & & 35122 & 374363．16 & & 340.08 \\
\hline 414939 & －24．24 & 437.37 & 㗔． 6 & 2004．80 & & & 271.23 \\
\hline 30.6 & －21．14 & 544．53 & 49．24 & 177.35 & \＄2393． 23 & & 2437.25 \\
\hline & －87．74 & 233.72 & E．4．03 & 113．38 & & 6479．3罭 & \\
\hline Wecis． & －18．09 & 149．68 & 23．4x & （ris． 99 & 17983．\({ }^{\text {P }}\) & 13nt3．45 & 02.0 \\
\hline & －6．94 & 74．931 & 23．48 & 39.75 & 4530． 35 & 4＊30．35 & 54．85 \\
\hline 3 may & 9．67 & 24．630 & ． 4 & 3．48 & 73．84 & & 迷．23 \\
\hline matanuma quay & 437min． & & & & & & \\
\hline
\end{tabular}

\section*{}

181 548 2x cuma

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 3 & ＋ & 3 & 6 & 7 & c \\
\hline \multirow[t]{3}{*}{(} & \(1{ }^{2}\) & vamum & cassmax & matmmit & cetre & 4xamamin & \multirow[t]{3}{*}{naxim mo Mantusia 43} \\
\hline & & cosmata & CLETmat & \(\mathrm{c}^{2}+\operatorname{matr}\) & Ansa & and & \\
\hline & & －3ctume & ce crers & \％asmeert & & 盛xatis & \\
\hline 2.02 & －28．58 & 1935．53 & 53.87 & 28.23 & 20032．00 & 920303．4 & 1292.25 \\
\hline 3．\({ }^{\text {cis }}\) & 23． 68 & 1710.87 & 67．46 & 40.38 & axismosi & \(6{ }^{2} 315.59\) & 1008.00 \\
\hline 49．6 & －43．97 & 1408．85 & 45． 21 & 128.53 & 2．572．63 & 2mems．69 & 925．25 \\
\hline 现 6 & －58． 23 & 2233.14 & 4．85 & 109.8 & 20573.69 & 20508． 29 & 755.25 \\
\hline 10．03 & 21．4s & 9\％． 38 & 8．8．79 & 70.83 & 153233.22 & 22\％ 27.29 & \＄99．25 \\
\hline 38．073 & － 21.6 & 783.04 & 28.62 & 61.65 & 62323．43 & 7297.31 & \(4 \times 4.00\) \\
\hline 103． 6 & －13．00 & 533.28 & 27.37 & 44.48 & 4．473．40 & 6esta．ts & 224．60 \\
\hline 1238．\({ }^{2}\) & －18．72 & 370.89 & 22.48 & 34.31 & 2 T 5 D 2.20 & 2052．45 & 71.25 \\
\hline 10023．03 & －6．63 & 150.46 & 18.10 & 12.70 & 6881.12 & \＄070．68 & 35.00 \\
\hline & 15029.23 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & － & 5 & 6 & 7 & 0 \\
\hline & Tsersma & & chensuriv & & A3T4A8 & cimun & minces 80 \\
\hline & & 50xsutis & & Cupusidin & A00． & 4038 & ntumme \\
\hline & Ww mrax & 4etamer & 48．catan & & & cteratis & v82en \\
\hline 1． 8 & －93．47 & 19\％．23 & 38．23 & 339.79 & 84925：39 & 48389.45 & 1180.25 \\
\hline 3．\({ }^{2}\) & － 50.30 & & 48.4 & 273.73 & 619178.8 & & 803．00 \\
\hline 58938 & －25．83 & & 4．92 & 228．96 & 42775 509 & 65\％\({ }^{\text {易月．05 }}\) & 209．00 \\
\hline 環。8 & － 84.58 & 1100.73 & 68．4．4 & 183.73 & 269ters． 73 & 37353.5 & 702． 25 \\
\hline 1 & \(-21.63\) & 628．03 & 37． 31 & 124．63 & 105．29．54 & 173333.30 & 541．25 \\
\hline 319．80 & －19．68 & 63.18 & 33.12 & 89．59 & 9724＊．04 & 97141．95 & 410.25 \\
\hline 14040 & －\＄3．4．4 & 648.19 & 27.73 & 39.37 & 45828.14 & & 271.25 \\
\hline & －10．64 & 231.22 & 21．74 & 31.27 & 18320． 10 & 17737．10 & 120．00 \\
\hline 1243，\({ }^{\text {a }}\) & －6．32． & 123.36 & 12.12 & 26． 18 & 4870.8 & 432． 25 & 35.00 \\
\hline & & & & & & & \\
\hline 895翏 & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 8 & 2 & 3 & 6 & 5 & 6 & 7 & ＊ \\
\hline & & & Gexstinu & nawarma & Arime & csemimmo & Eances 70 \\
\hline & 4tatio & 20xmbis & Examixicin & Cmessurix & ABEA & Astita & FAxtima \\
\hline & 235803 & H2PTATK3 & 4x oxemex & & & & vastu \\
\hline 8.8 & －38．35 & 163．30 & 36.50 & 384． 36 & 1293020．58 & 1547997．498 & 1089．00 \\
\hline 3.8 & －37． 23 & 1423．40 & 91.32 & 475．\({ }^{\text {ch }}\) & 209313．22 & & 979.25 \\
\hline 23040 & －29．39 & 1188．07 & 47.59 & 340．36 & 35800．97 & & 783.00 \\
\hline 32．049 & －28．37 & 973．67 & 63.98 & 251.03 & 409182.05 & 4＊032． 23 & 629．60 \\
\hline 1393．43 & －28．44 & 742.63 & 3 3.45 & 159． 17 & 222593.53 & & 422．00 \\
\hline & －1是．43 & 293．82 & 数． 8 & \(13^{3} .28\) & 118887． 27 & 22303： 32 & 361.25 \\
\hline 2502． & －86．62 & 363．67 & 29.11 & 21．07 & & 4．32ten． 15 & 224．60 \\
\hline & \(-18.39\) & 213.63 & 23． 72 & 4．9．83 & 14332．13 & 4689，\({ }^{\text {a }}\) & 109．29 \\
\hline 840939．68 & －3．63 & 08． 38 & 12.18 & 21.83 & 2083．65 & & － \\
\hline & 13583． 63 & & & & & & \\
\hline 路新建 & & & & & & & \\
\hline
\end{tabular}

\section*{ mot cham cranzin}

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & 2 & 1 & － & 5 & B & 7 & \multirow[t]{2}{*}{\begin{tabular}{l}
8 \\
nime 70
\end{tabular}} \\
\hline & Masmamin & cramemat & crumiry & mesixa & cerme & Escuatem & \\
\hline & 0entio & cowners & vamutueis & cmesmat & cein & AESA & 6xicentil \\
\hline & mexreco & careses & cis criciz & Humwtur & & & U8685 \\
\hline 8． 28 & －25． 88 & 3523.16 & 43．63 & 143．49 & 928910.63 & 03858.50 & 2203.00 \\
\hline 1．\({ }^{\text {cte }}\) & －Ps．\({ }^{\text {E }}\) & 5123．04 & 4．a．43 & 20.20 & 648590．97 & 62936100 & 1009.25 \\
\hline 80． 20 & －23．59 & 2852．79 & 77．38 & 438.08 & 472230.60 & ccistas & 15979.25 \\
\hline 940 & －20． 37 & 2004． 33 & 15．80 & 09.70 & 324E4．57 & 3100950．04 & 1331.23 \\
\hline 23．43 & －17．06 & 1793．01 & 19．43 & 67．08 & 102tesm． 8 & 129318.68 & 978.25 \\
\hline 2923 & －18．87 & 1720．48 & 2.3 .53 & 90，00 & 118249.17 & 203780．71 & 640.25 \\
\hline 1000.03 & －12．23 & 038.38 & 22.48 & 97.43 & 59350． 57 & 53813．37 & 100.00 \\
\hline 10093． 20 & －7．68 & 904.33 & 13.48 & 25.73 & 10479．59 & 20091．73 & 153.75 \\
\hline 10093.63 & ． 23 & 105． 5 & ． 0 & 12.61 & 1243．46 & 2035．70 & 24.00 \\
\hline & 10720．24 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline I & 2 & 3 & 4 & 3 & 6 & 7 & 9 \\
\hline & Tumutu & cimmext & Cutwimma & Texty & 4smind & 4xtwamu & － \\
\hline \multirow[t]{2}{*}{} & 5icuste & & & Cumesuexix & & \％ & \\
\hline & Wens & mensumerm & 隹 & Humindema & & & 國酸哏 \\
\hline 8.83 & －28．73 & & 63．308 & 248.73 & 3a3483．47 & 49478．3．3 & \\
\hline 3．\({ }^{\text {\％}}\) & & 2mben & \(44^{4.65}\) & 374.73 & & & 1849．83 \\
\hline 10．30 & & 2373.4 & 37.4 & 14．4．4 & 4tseds．\({ }^{48}\) & & 1090．20 \\
\hline 20． & －43） 5 & 84034．73 & 310．30 & 168．48 & 42103.23 & & 828.0 \\
\hline 2 \({ }^{\text {a }}\) & －57 04 & 3tw． & 38.37 & 18303 \({ }^{3}\) & 23715．34 & & 94．4．25 \\
\hline 3630，\({ }^{4}\) & － 24.8 & 1．53．0．9 & 36．43 & 69.75 & 123ss．\({ }^{\text {ch }}\) & E2mbous & 44＊3． 25 \\
\hline 4hatim & －12．\({ }^{\text {d }}\) & 74．4．4 & 21．83 & 43．\({ }^{4}\) & 19130．78 & & 30．04 \\
\hline \％ & － 7.3 & 394．43 & 13.49 & 24.45 & 1570 \({ }^{\text {chemy }}\) & 1035 \({ }^{\text {cis }}\) & 193.25 \\
\hline 153030 & ． 34 & 53． 52 & －\(e\) d & 11.89 & 143． 28 & 3514．43 & 26．03 \\
\hline 4armbuisi cmix & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

```

